Dark matter stability and unification without supersymmetry

In the absence of low energy supersymmetry, we show that (a) the dark matter particle alone at the TeV scale can improve gauge coupling unification, raising the unification scale up to the lower bound imposed by proton decay, and (b) the dark matter stability can automatically follow from the grand unification symmetry. Within reasonably simple unified models, a unique candidate satisfying these two properties is singled out: a fermion isotriplet with zero hypercharge, member of a 45 (or larger) representation of SO(10). We discuss the phenomenological signatures of this TeV scale fermion, which can be tested in direct and indirect future dark matter searches. The proton decay rate into e{sup +{pi}0} is predicted close to the present bound.

[1]  Hiren H. Patel,et al.  Vacuum stability, perturbativity, and scalar singlet dark matter , 2009, 0910.3167.

[2]  A. Roeck,et al.  Future Facilities Summary , 2009, 0910.4753.

[3]  K. F. Chen,et al.  From the LHC to future colliders , 2009, 0909.3240.

[4]  Y. Mambrini,et al.  Antimatter signals of singlet scalar dark matter , 2009, 0909.2799.

[5]  M. Kadastik,et al.  Dark matter as the signal of grand unification , 2009, 0907.1894.

[6]  F. Ling,et al.  IDM & iDM or the inert doublet model and inelastic dark matter , 2009, 0907.0430.

[7]  I. Puljak,et al.  Collider signatures for the heavy lepton triplet in the type I+III seesaw mechanism , 2009, 0904.2390.

[8]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[9]  L. Luzio,et al.  Intermediate mass scales in the nonsupersymmetric SO(10) grand unification: A reappraisal , 2009, 0903.4049.

[10]  A. Strumia,et al.  Minimal dark matter: model and results , 2009, 0903.3381.

[11]  M. Kadastik,et al.  Matter parity as the origin of scalar Dark Matter , 2009, 0903.2475.

[12]  S. Kim,et al.  Search for proton decay via p-->e+pi0 and p-->micro+pi0 in a large water Cherenkov detector. , 2009, Physical review letters.

[13]  L. Baudis,et al.  Status and Sensitivity Projections for the XENON100 Dark Matter Experiment , 2009, 0902.4253.

[14]  M Nagni,et al.  New measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation. , 2008, Physical review letters.

[15]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[16]  J. A. Aguilar-Saavedra,et al.  Distinguishing seesaw models at LHC with multi-lepton signals , 2008, 0808.2468.

[17]  M. Tytgat,et al.  WIMP dark matter, Higgs exchange and DAMA , 2008, 0808.0255.

[18]  A. Strumia,et al.  Type-III seesaw mechanism at CERN LHC , 2008 .

[19]  G. Rodrigo,et al.  Proton Stability, Dark Matter and Light Color Octet Scalars in Adjoint SU(5) Unification , 2008, 0803.4156.

[20]  A. Strumia,et al.  Minimal Dark Matter predictions for galactic positrons, anti-protons, photons , 2008, 0802.3378.

[21]  T. Bruch Status and future of the CDMS experiment: CDMS‐II to SuperCDMS , 2007 .

[22]  M. Tytgat,et al.  Electroweak symmetry breaking induced by dark matter , 2007, 0707.0633.

[23]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[24]  A. Strumia,et al.  Cosmology and Astrophysics of Minimal Dark Matter , 2007, 0706.4071.

[25]  L. Bergström,et al.  Significant gamma lines from inert Higgs dark matter. , 2007, Physical review letters.

[26]  G. Senjanovic,et al.  Probing the seesaw mechanism at CERN LHC , 2007, hep-ph/0703080.

[27]  P. F. Pérez Renormalizable adjoint SU(5) , 2007, hep-ph/0702287.

[28]  M. Tytgat,et al.  The inert doublet model: an archetype for dark matter , 2006, hep-ph/0612275.

[29]  Francesco Sannino,et al.  Gauge coupling unification via a technicolor model , 2006, hep-ph/0612230.

[30]  P. F. Pérez,et al.  Upper bound on the mass of the type III seesaw triplet in an SU(5) model , 2006, hep-ph/0612216.

[31]  G. Senjanovic,et al.  Seesaw at LHC , 2006, hep-ph/0612029.

[32]  T. Moroi,et al.  Possible signals of wino LSP at the Large Hadron Collider , 2006, hep-ph/0610277.

[33]  J. Hisano,et al.  Non‐perturbative Effect on Thermal Relic Abundance of Dark Matter , 2006, hep-ph/0610249.

[34]  E. Ma Verifiable radiative seesaw mechanism of neutrino mass and dark matter , 2006, hep-ph/0601225.

[35]  J. Hisano,et al.  Heavy wino-like neutralino dark matter annihilation into antiparticles , 2005, hep-ph/0511118.

[36]  E. Ma Efficacious additions to the Standard Model , 2005, hep-ph/0508030.

[37]  J. Hisano,et al.  Nonperturbative effect on dark matter annihilation and gamma ray signature from the galactic center , 2004, hep-ph/0412403.

[38]  P. F. Pérez,et al.  How long could we live , 2004, hep-ph/0410198.

[39]  G. Giudice,et al.  Erratum to: "Split supersymmetry" [Nucl. Phys. B 699 (2004) 65] , 2004, hep-ph/0406088.

[40]  Savas Dimopoulos,et al.  Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC , 2004, hep-th/0405159.

[41]  D. Roy,et al.  Heavy triplet leptons and new gauge boson , 2002, hep-ph/0206150.

[42]  J. McDonald Thermally generated gauge singlet scalars as self-interacting dark matter. , 2001, Physical review letters.

[43]  A. Hebecker,et al.  A Minimal S^1/(Z_2 x Z_2') Orbifold GUT , 2001, hep-ph/0106166.

[44]  G. Altarelli,et al.  SU(5) Grand Unification in Extra Dimensions and Proton Decay , 2001, hep-ph/0105321.

[45]  L. Hall,et al.  Gauge unification in higher dimensions , 2001, hep-ph/0103125.

[46]  Y. Kawamura,et al.  Triplet-Doublet Splitting, Proton Stability and an Extra Dimension. , 2000, hep-ph/0012125.

[47]  C. Burgess,et al.  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[48]  G. Senjanovic,et al.  SO(10) theory of R-parity and neutrino mass , 2000, hep-ph/0004031.

[49]  J. Wells,et al.  Phenomenological Consequences of Supersymmetry with Anomaly-Induced Masses , 1999, hep-ph/9904378.

[50]  Y. Kawamura,et al.  Gauge Symmetry Reduction from the Extra Space S1/Z2 , 1999, hep-ph/9902423.

[51]  Hsin-Chia Cheng,et al.  Generic and chiral extensions of the supersymmetric standard model , 1998, hep-ph/9811316.

[52]  G. Senjanovic,et al.  Supersymmetry and large scale left-right symmetry , 1997, hep-ph/9712551.

[53]  Mcdonald,et al.  Gauge singlet scalars as cold dark matter. , 1994, Physical review. D, Particles and fields.

[54]  Babu,et al.  Natural suppression of Higgsino-mediated proton decay in supersymmetric SO(10). , 1993, Physical review. D, Particles and fields.

[55]  Mártin,et al.  Some simple criteria for gauged R parity. , 1992, Physical review. D, Particles and fields.

[56]  L. Ibáñez,et al.  Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model , 1992 .

[57]  F. Wilczek,et al.  Discrete gauge symmetry in continuum theories. , 1989, Physical review letters.

[58]  R. Mohapatra,et al.  New contributions to neutrinoless double-beta decay in supersymmetric theories. , 1986, Physical review. D, Particles and fields.

[59]  M. Srednicki Supersymmetric grand unified theories and the early universe , 1982 .

[60]  F. Wilczek,et al.  Operator Analysis of Nucleon Decay , 1979 .

[61]  Ernest Ma,et al.  Pattern of Symmetry Breaking with Two Higgs Doublets , 1978 .

[62]  Dimitri V. Nanopoulos,et al.  Aspects of the flipped unification of strong, weak and electromagnetic interactions , 1978 .

[63]  Lee,et al.  Predictions for the proton lifetime in minimal nonsupersymmetric SO(10) models: An update. , 1995, Physical review. D, Particles and fields.