Interface recombination velocity at the Si/SiO2 interface determined from bias-dependent photoluminescence

The photoluminescence field effect is used to study the recombination at the Si/SiO2 interface. Experiments and theoretical considerations show that the field-induced quenching of the photoluminescence intensity is due to increasing interface recombination velocity. The influence of a “dead” depletion layer free of recombination radiation on the photoluminescence intensity is found to be negligible. This fact enables one to determine quantitatively the interface recombination velocity from the normalized photoluminescence intensity. The determination of interface state parameters is discussed. Der Photolumineszenzfeldeffekt wird benutzt, um die Rekombination an der Si/SiO2-Grenzflache zu untersuchen. Die Experimente und theoretischen Untersuchungen lassen den Schlus zu, das die feldinduzierte Abnahme der Photolumineszenzintensitat durch eine erhohte Grenzflachenrekombinationsgeschwindigkeit verursacht wird. Der Einflus einer „toten” Verarmungsrandschicht ohne Strahlungsemission auf die Photolumineszenzintensitat ist hierbei vernachlassigbar. Diese Tatsache erlaubt eine quantitative Bestimmung der Grenzflachenrekombinationsgeschwindigkeit aus der normierten Photolumineszenzintensitat. Die Moglichkeit der Bestimmung von Parametern der Grenzflachenzustande wird diskutiert.

[1]  H. Gerischer,et al.  Photoluminescence as an In‐Situ Technique to Determine Solid State and Surface Properties of Semiconductors in an Electrochemical Cell — Application of the “Dead Layer Model” , 1989 .

[2]  H. Mckell,et al.  Diffusion length studies in silicon by the surface photovoltage method , 1988 .

[3]  R. Mertens,et al.  Determination of Si-SiO/sub 2/ interface recombination parameters using a gate-controlled point-junction diode under illumination , 1988 .

[4]  B. A. Oliver,et al.  Laser beam induced current measurements of minority carrier diffusion length , 1987 .

[5]  D. Lile,et al.  Surface characterization of InP using photoluminescence , 1987 .

[6]  L. Canham Room temperature photoluminescence from etched silicon surfaces: The effects of chemical pretreatments and gaseous ambients , 1986 .

[7]  M. Tomkiewicz,et al.  Electric field modulation of photoluminescence in cadmium selenide liquid junction solar cells , 1983 .

[8]  A. Ellis,et al.  Photoluminescent properties of n-GaAs electrodes: applications of the dead-layer model to photoelectrochemical cells. Technical report , 1983 .

[9]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[10]  J. Sites,et al.  Photoluminescence dead layer in p‐type InP , 1982 .

[11]  M. Yamaguchi,et al.  Surface Band Bending Effects on Photoluminescence Intensity in n-InP Schottky and MIS Diodes , 1981 .

[12]  M. Yamaguchi,et al.  Surface Field Effect of Photoluminescence Intensity in ZnSe Schottky Diode , 1981 .

[13]  M. Yamaguchi,et al.  Bias‐dependent photoluminescence intensities in n‐InP Schottky diodes , 1980 .

[14]  Y. Shiraki,et al.  Photoluminescence study of laser annealing in phosphorus‐implanted and unimplanted silicon , 1979 .

[15]  H. Nagai,et al.  Properties of ambient‐enhanced photoluminescence from InP and GaAs surfaces , 1979 .

[16]  M. Ogawa,et al.  In situ measurements of photoluminescence intensities from cleaved (110) surfaces of n-type InP in a vacuum and gas ambients , 1979 .

[17]  Y. Shiraki,et al.  Photoluminescence topographic observation of defects in silicon crystals , 1978 .

[18]  H. Nagai,et al.  Ambient gas influence on photoluminescence intensity from InP and GaAs cleaved surfaces , 1978 .

[19]  Y. Shiraki,et al.  Photoluminescence observation of swirl defects and gettering effects in silicon at room temperature , 1978 .

[20]  K. Mettler Photoluminescence as a tool for the study of the electronic surface properties of gallium arsenide , 1977 .

[21]  W. Gerlach,et al.  On the radiative recombination rate in silicon , 1972 .

[22]  N. Winogradoff Field Control of the Quantum Efficiency of Radiative Recombination in Semiconductors , 1965 .

[23]  Frank Stern,et al.  Spontaneous and Stimulated Recombination Radiation in Semiconductors , 1964 .

[24]  W. Albers,et al.  The influence of ambient atmospheres on the exciton emission of cadmium sulfide , 1964 .

[25]  H. B. Devore Spectral Distribution of Photoconductivity , 1956 .

[26]  W. Shockley,et al.  Photon-Radiative Recombination of Electrons and Holes in Germanium , 1954 .

[27]  Donald T. Stevenson,et al.  Measurements of the recombination velocity at germanium surfaces , 1954 .

[28]  W. V. Roosbroeck,et al.  The Transport of Added Current Carriers in a Homogeneous Semiconductor , 1953 .

[29]  J. Bardeen,et al.  Surface properties of germanium , 1953 .

[30]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .