Combustion in Supersonic Flows and Scramjet Combustion Simulation

The scramjet (supersonic combustion ramjet) is an air-breathing engine with the supersonic flow at the combustor entrance, i.e., with essentially lower deceleration of flow in the inlet with respect to common ramjet. The scramjet is designed for hypersonic flight of vehicle with Mach number large than 5 or 6, where the efficiency of a subsonic ramjet decreases, because the deceleration of high-speed flow to small subsonic speeds leads to extremely high temperature at the entrance to combustor, that, in its turn, generates a series of effects, deteriorating the performance of classical ramjet. The scramjet is characterized by strong coupling of all its elements. Supersonic core from the inlet to the nozzle, essential subsonic zones in thick boundary layers and high losses caused by strong shock waves, by viscous effects, by dissociation and radiation result in a situation, when positive thrust may be reached only on the basis of joint optimization of the whole flowpath. In comparison with experimental investigations, which remain very challenging to conduct in such flow conditions, computational fluid dynamics is an attractive complementary tool for the study supersonic reactive flow in the scramjet flowpath. Understanding and prediction of the flow structure are necessary for achieving the stable and efficient combustion, high thrust, and thermostable construction of the scramjet. The first half of the chapter addresses fundamentals of turbulent supersonic combustion: physics of combustion in supersonic flows with regard to scramjets, Navier--Stokes equations for multispecies reacting gas flow, kinetic schemes for simulation of scramjets, RANS/URANS, and LES approaches, the closure problems for turbulent fluxes. Particular attention is paid to the discussion of the difficulties when resolving closure problems for reaction rates. The contemporary models to account for turbulence-chemistry interactions (TCI) are shortly presented. The second half of the chapter focuses on partially stirred reactor (PaSR) turbulent combustion models. Transported PaSR (TPaSR) and unsteady PaSR models are described in details, and experience of their application to simulation of experiments on supersonic combustion (within the framework of LES approach) is demonstrated. Finally, the problem of the selection of “correct” solution among multiple solutions of PaSR steady-state equations is considered.

[1]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[2]  Alexander J. Smits,et al.  Turbulent Shear Layers in Supersonic Flow , 1996 .

[3]  C. G. Speziale On nonlinear K-l and K-ε models of turbulence , 1987, Journal of Fluid Mechanics.

[4]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[5]  T. Gatski,et al.  Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach , 1991, Journal of Fluid Mechanics.

[6]  C. Fureby,et al.  A comparative study of flamelet and finite rate chemistry LES for an axisymmetric dump combustor , 2011 .

[7]  Donghyun You,et al.  A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows , 2011 .

[8]  Walter Tollmien,et al.  Über ein neues Formelsystem für die ausgebildete Turbulenz , 1961 .

[9]  A. Roshko,et al.  The compressible turbulent shear layer: an experimental study , 1988, Journal of Fluid Mechanics.

[10]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[11]  A. P. Kurkov,et al.  Analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream. [Experimental data on the diffusive mixing and reaction of H and air at high temperature for the design of the supersonic combustion ramjet engine] , 1973 .

[12]  Christer Fureby,et al.  LES combustion modeling for high Re flames using a multi-phase analogy , 2013 .

[13]  Uriel Goldberg,et al.  Variable Turbulent Schmidt and Prandtl Number Modeling , 2010 .

[14]  A. Townsend,et al.  The nature of turbulent motion at large wave-numbers , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Laurent Serre,et al.  The French PROMETHEE Program Main goals and Status in 1999 , 1999 .

[16]  Normand M. Laurendeau Statistical Thermodynamics: Fundamentals and Applications , 2005 .

[17]  Christer Fureby,et al.  CFD Analysis of the HyShot II scramjet combustor , 2011 .

[18]  V. Sankaran,et al.  Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime , 2005 .

[19]  A. Kerstein ODT: Stochastic Simulation of Multi-scale Dynamics , 2008 .

[20]  J. Deardorff,et al.  The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospheric Turbulence , 1973 .

[21]  A. R. Kerstein,et al.  One-Dimensional Turbulence Stochastic Simulation of Multi-Scale Dynamics , 2009 .

[22]  Charles Meneveau,et al.  The fractal facets of turbulence , 1986, Journal of Fluid Mechanics.

[23]  P. Spalart Detached-Eddy Simulation , 2009 .

[24]  L. Prandtl 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1925 .

[25]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[26]  F. Grinstein,et al.  Monotonically integrated large eddy simulation of free shear flows , 1999 .

[27]  A. Jameson,et al.  Discrete filter operators for large‐eddy simulation using high‐order spectral difference methods , 2013 .

[28]  Arne V. Johansson,et al.  Engineering Turbulence Models and their Development, with Emphasis on Explicit Algebraic Reynolds Stress Models , 2002 .

[29]  Arnaud Mura,et al.  Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets , 2014 .

[30]  J. Chomiak Basic considerations in the turbulent flame propagation in premixed gases , 1979 .

[31]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[32]  Christer Fureby,et al.  On Flux-Limiting-Based Implicit Large Eddy Simulation , 2007 .

[33]  Otto Zeman,et al.  Dilatation dissipation: The concept and application in modeling compressible mixing layers , 1990 .

[34]  Johan Meyers,et al.  Quality and Reliability of Large-Eddy Simulations , 2008 .

[35]  Sutanu Sarkar,et al.  The pressure-dilatation correlation in compressible flows , 1992 .

[36]  Hassan Hassan,et al.  Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor , 2012 .

[37]  P. Sagaut,et al.  Large Eddy Simulation for Compressible Flows , 2009 .

[38]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[39]  Harsha K. Chelliah,et al.  Explicit reduced reaction models for ignition, flame propagation, and extinction of C2H4/CH4/H2 and air systems , 2007 .

[40]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[41]  Very High Resolution Simulations of Compressible, Turbulent Flows , 2001 .

[42]  A. D. Gosman,et al.  Application of a flame-wrinkling les combustion model to a turbulent mixing layer , 1998 .

[43]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[44]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[45]  Charles E. Cockrell,et al.  Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development , 2002 .

[46]  R. Edelman,et al.  A quasi-global chemical kinetic model for the finite rate combustion of hydrocarbon fuels with application to turbulent burning and mixing in hypersonic engines and nozzles. , 1969 .

[47]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[48]  Michael K. Smart,et al.  Computational fluid dynamics investigation of a mach 12 scramjet engine , 2014 .

[49]  Rolf Radespiel,et al.  Differential Reynolds Stress Modeling for Aeronautics , 2012 .

[50]  Vitali V. Lissianski,et al.  Combustion chemistry of propane: A case study of detailed reaction mechanism optimization , 2000 .

[51]  R. Minetti,et al.  Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel , 2006 .

[52]  Robert W. Bilger,et al.  Conditional moment closure for turbulent reacting flow , 1993 .

[53]  Klaus Hannemann,et al.  A Computational Study of the HySHOT II Combustor Performance , 2013 .

[54]  Ishwar K. Puri,et al.  Combustion Science and Engineering , 2006 .

[55]  Feng Gao,et al.  A large‐eddy simulation scheme for turbulent reacting flows , 1993 .

[56]  C. Meneveau,et al.  A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests , 2002 .

[57]  P. Moin,et al.  Numerical Simulation of Turbulent Flows , 1984 .

[58]  Sébastien Candel,et al.  Numerical Study of Unsteady Turbulent Premixed Combustion: Application to Flashback Simulation , 1998 .

[59]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[60]  A. Kerstein,et al.  Advances and challenges in modeling high-speed turbulent combustion in propulsion systems , 2017 .

[61]  Christer Fureby,et al.  LES of supersonic combustion in a scramjet engine model , 2007 .

[62]  B. Launder,et al.  Progress in the development of a Reynolds-stress turbulence closure , 1975, Journal of Fluid Mechanics.

[63]  U. Piomelli,et al.  Wall-layer models for large-eddy simulations , 2008 .

[64]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[65]  S. Menon,et al.  Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene Reduced Kinetic Mechanism , 2006 .

[66]  Klaus Hannemann,et al.  Understanding scramjet combustion using LES of the HyShot II combustor , 2017 .

[67]  Yoshiaki Miyazato,et al.  Shock train and pseudo-shock phenomena in internal gas flows , 1999 .

[68]  J. Chomiak,et al.  A possible propagation mechanism of turbulent flames at high Reynolds numbers , 1970 .

[69]  K. Hannemann,et al.  Transient fluid-combustion phenomena in a model scramjet , 2013, Journal of Fluid Mechanics.

[70]  W. Liou,et al.  Application of a two-layer model for implicit large-eddy simulations using a high-order compact scheme , 2010 .

[71]  O. A. Powell,et al.  Development of Hydrocarbon-Fueled Scramjet Engines: The Hypersonic Technology (HyTech) Program , 2001 .

[72]  Philip E. Morgan,et al.  An Implicit LES Approach Based on High-order Compact Differencing and Filtering Schemes (Invited) , 2003 .

[73]  Mamoru Tanahashi,et al.  Coherent fine-scale eddies in turbulent premixed flames , 2000 .

[74]  J Craig Dutton,et al.  Velocity measurements of compressible, turbulent mixing layers , 1990 .

[75]  Hassan Hassan,et al.  Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers , 2006 .

[76]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[77]  E. S. Shetinkov Calculation of flame velocity in turbulent stream , 1958 .

[78]  L. H. Townend,et al.  Domain of the Scramjet , 2001 .

[79]  A. Burcat,et al.  Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables). , 2005 .

[80]  Corin Segal,et al.  The Scramjet Engine: Contents , 2009 .

[81]  A. M. Oboukhov Some specific features of atmospheric tubulence , 1962, Journal of Fluid Mechanics.

[82]  D. Veynante,et al.  Experimental Study of the Filtered Progress Variable Approach for LES of Premixed Combustion , 2002 .

[83]  G. M. Makhviladze,et al.  The Mathematical Theory of Combustion and Explosions , 2011 .

[84]  Arkady Tsinober,et al.  An informal conceptual introduction to turbulence , 2009 .

[85]  Corin Segal,et al.  The Scramjet Engine: List of Acronyms , 2009 .

[86]  Nilanjan Chakraborty,et al.  A posteriori testing of algebraic flame surface density models for LES , 2013 .

[87]  A. Shapiro The dynamics and thermodynamics of compressible fluid flow. , 1953 .

[88]  G. M. Makhviladze,et al.  Introduction. Foundations of the Science of Combustion: Basic Physical Concepts , 1985 .

[89]  J. Ferziger,et al.  Mathematical theory of transport processes in gases , 1972 .

[90]  Anna Shiryaeva,et al.  Development and Application of Numerical Technology for simulation of different combustion types in high-speed viscous gas turbulent flows , 2014 .

[91]  A. Kerstein,et al.  The One-Dimensional-Turbulence Model , 2011 .

[92]  W. Rodi,et al.  Large-Eddy Simulation in Hydraulics , 2013 .

[93]  C. Westbrook,et al.  A comprehensive modeling study of hydrogen oxidation , 2004 .

[94]  Florian R. Menter,et al.  Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes , 2009 .

[95]  Dmitry A. Lysenko On Numerical Simulation of Turbulent Flows and Combustion , 2014 .

[96]  Bjørn F. Magnussen,et al.  A Numerical Study of a Bluff-Body Stabilized Diffusion Flame. Part 2. Influence of Combustion Modeling And Finite-Rate Chemistry , 1996 .

[97]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[98]  C. Fureby LES for Supersonic Combustion , 2012 .

[99]  Christer Fureby,et al.  A computational study of supersonic combustion in strut injector and hypermixer flow fields , 2015 .

[100]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[101]  Thomas A. Litzinger,et al.  The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena , 2012 .

[102]  W. Rodi A new algebraic relation for calculating the Reynolds stresses , 1976 .

[103]  C. Fureby,et al.  Extended LES-PaSR model for simulation of turbulent combustion , 2013 .

[104]  Joseph A. Wehrmeyer,et al.  Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame , 1994 .

[105]  Rickard Bensow,et al.  On the justification and extension of mixed models in LES , 2007 .

[106]  Antonella Ingenito,et al.  Supersonic mixing and combustion: advance in les modeling , 2009 .

[107]  Miguel R. Visbal,et al.  Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes , 2002 .

[108]  J. Ferziger,et al.  Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows , 1983 .

[109]  Andreas Mack,et al.  CFD Analysis of the HyShot II Scramjet Experiments in the HEG Shock Tunnel , 2008 .

[110]  Christer Fureby,et al.  Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in a Supersonic Combustion Ramjet , 2010 .

[111]  Henry C Barnett,et al.  Adaptation of Combustion Principles to Aircraft Propulsion, Volume I, Basic Considerations in the Combustion of Hydrocarbon Fuels with Air , 1955 .

[112]  D. Wilcox Formulation of the k-w Turbulence Model Revisited , 2008 .

[113]  Johan Steelant,et al.  Layout and Design Verification of a Small Scale Scramjet Combustion Chamber , 2013 .

[114]  I. S. Ertesvåg,et al.  The Eddy Dissipation Turbulence Energy Cascade Model , 2000 .

[115]  Dmitry Davidenko,et al.  Numerical Simulation of Hydrogen Supersonic Combustion and Validation of Computational Approach , 2003 .

[116]  K. Kuo Principles of combustion , 1986 .

[117]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[118]  Dean R. Chapman,et al.  Computational Aerodynamics Development and Outlook , 1979 .

[119]  Fractal modelling of turbulent mixing , 1999 .

[120]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[121]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[122]  B. Naud PDF modeling of turbulent sprays and flames using a particle stochastic approach , 2003 .

[123]  Sanjiva K. Lele,et al.  Compressibility Effects on Turbulence , 1994 .

[124]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[125]  L. Prandtl Bemerkungen zur Theorie der freien Turbulenz . , 1942 .

[126]  B. Launder,et al.  Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc , 1974 .

[127]  Rs Cant,et al.  A flame surface density approach to large-eddy simulation of premixed turbulent combustion , 2000 .

[128]  B. Magnussen On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow , 1981 .

[129]  A. Tsinober The Essence of Turbulence as a Physical Phenomenon , 2013 .

[130]  S. M. Bosnyakov,et al.  Experience of validation and tuning of turbulence models as applied to the problem of boundary layer separation on a finite-width wedge , 2016 .

[131]  Florian R. Menter,et al.  Explicit Algebraic Reynolds Stress Models for Anisotropic Wall-Bounded Flows , 2012 .

[132]  Michael S. Shur,et al.  Comparative numerical testing of one- and two-equation turbulence models for flows with separation and reattachment , 1995 .

[133]  The Riemann Problem for Reynolds-Stress-Transport in RANS and VLES , 2009 .

[134]  A. Shiryaeva On the stationary state of a mixture of reacting gases , 2010 .

[135]  Makoto Sato,et al.  DNS and Combined Laser Diagnostics of Turbulent Combustion , 2008 .

[136]  S. Corrsin,et al.  Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid , 1971, Journal of Fluid Mechanics.

[137]  Sharath S. Girimaji,et al.  Toward second-moment closure modelling of compressible shear flows , 2013, Journal of Fluid Mechanics.

[138]  Christer Fureby,et al.  On LES and DES of Wall Bounded Flows , 2007 .

[139]  Luís Fernando Figueira da Silva,et al.  Partially stirred reactor: study of the sensitivity of the Monte-Carlo simulation to the number of stochastic particles with the use of a semi-analytic, steady-state, solution to the pdf equation , 2002 .

[140]  Zhenwei Zhao,et al.  An updated comprehensive kinetic model of hydrogen combustion , 2004 .

[141]  G. Moretti A new technique for the numerical analysis of nonequilibrium flows , 1965 .

[142]  Alexander M. Molchanov Numerical Simulation of Supersonic Chemically Reacting Turbulent Jets , 2011 .

[143]  Stephen B. Pope,et al.  Filtered mass density function for large-eddy simulation of turbulent reacting flows , 1999, Journal of Fluid Mechanics.

[144]  P. Moin,et al.  The basic equations for the large eddy simulation of turbulent flows in complex geometry , 1995 .

[145]  C. Westbrook,et al.  Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames , 1981 .

[146]  Claudio Bruno,et al.  Fractal modelling of turbulent combustion , 2000 .

[147]  D. Drew Mathematical Modeling of Two-Phase Flow , 1983 .

[148]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[149]  Paul J. Waltrup,et al.  Upper Bounds on the Flight Speed of Hydrocarbon-Fueled Scramjet-Powered Vehicles , 2001 .

[150]  Andrey Viktorovich Wolkov,et al.  Implementation of High-Order Discontinuous Galerkin Method for Solution of Practical Tasks in External Aerodynamics and Aeroacoustics , 2015 .

[151]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[152]  Robert J. Kee,et al.  CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics , 1996 .

[153]  Peyman Givi,et al.  Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion , 2006 .

[154]  C. Fureby,et al.  Large eddy simulation modelling of combustion for propulsion applications , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[155]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[156]  A. Troshin A Turbulence model taking into account the longitudinal flow inhomogeneity in mixing layers and jets , 2017 .

[157]  Morten Seljeskog,et al.  Assessment of existing H2/O2 chemical reaction mechanisms at reheat gas turbine conditions , 2011, 1104.4925.

[158]  Ping Wang,et al.  Large eddy simulation of turbulent premixed flames using level-set G-equation , 2005 .

[159]  Corin Segal,et al.  The Scramjet Engine: Processes and Characteristics , 2009 .