Coarsening and self-organization in dilute diblock copolymer melts and mixtures

Abstract This paper explores the evolution of a sharp interface model for phase separation of copolymers in the limit of low volume fraction. Particles both exchange material as in usual Ostwald ripening, and migrate because of an effectively repulsive nonlocal energetic term. Coarsening via mass diffusion only occurs while particle radii are small, and they eventually approach a finite equilibrium size. Migration, on the other hand, is responsible for producing self-organized patterns. We construct approximations based upon an ansatz of spherical particles similar to the classical LSW theory to derive finite dimensional dynamics for particle positions and radii. For large systems, kinetic-type equations which describe the evolution of a probability density are constructed. For systems larger than the screening length, we obtain an analog of the homogenization result of Niethammer & Otto [B. Niethammer, F. Otto, Ostwald ripening: The screening length revisited, Calc. Var. Partial Differential Equations 13-1 (2001) 33–68]. A separation of timescales between particle growth and migration allows for a variational characterization of spatially inhomogeneous quasi-equilibrium states.

[1]  David A. Huse,et al.  Pattern coarsening in a 2D hexagonal system , 2004 .

[2]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[3]  Yasumasa Nishiura,et al.  Some mathematical aspects of the micro-phase separation in diblock copolymers , 1995 .

[4]  Peter Sternberg,et al.  On the first and second variations of a nonlocal isoperimetric problem , 2007 .

[5]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[6]  Y. Nishiura,et al.  Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term. , 1999, Chaos.

[7]  Ian W. Hamley,et al.  The physics of block copolymers , 1998 .

[8]  Morgan,et al.  Domain coarsening in a two-dimensional binary mixture: Growth dynamics and spatial correlations. , 1994, Physical Review Letters.

[9]  Mark A. Peletier,et al.  Small Volume Fraction Limit of the Diblock Copolymer Problem: I. Sharp-Interface Functional , 2009, SIAM J. Math. Anal..

[10]  B. Chakraverty Grain size distribution in thin films—1. Conservative systems , 1967 .

[11]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[12]  Felix Otto,et al.  Ostwald ripening: The screening length revisited , 2001 .

[13]  Barbara Niethammer,et al.  Derivation of the LSW‐Theory for Ostwald Ripening by Homogenization Methods , 1999 .

[14]  G. Papanicolaou,et al.  The point interaction approximation for diffusion in regions with many small holes , 1987 .

[15]  P. Gennes Dynamics of fluctuations and spinodal decomposition in polymer blends , 1980 .

[16]  Andrea Braides Γ-convergence for beginners , 2002 .

[17]  R. E. Rosensweig,et al.  Directions in ferrohydrodynamics (invited) , 1985 .

[18]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[19]  Felix Otto,et al.  Coarsening Rates for a Droplet Model: Rigorous Upper Bounds , 2006, SIAM J. Math. Anal..

[20]  Mark A. Peletier,et al.  On the Phase Diagram for Microphase Separation of Diblock Copolymers: An Approach via a Nonlocal Cahn--Hilliard Functional , 2009, SIAM J. Appl. Math..

[21]  Xiaofeng Ren,et al.  Evolution in off-critical diblock copolymer melts , 2008, Networks Heterog. Media.

[22]  Felix Otto,et al.  Domain coarsening in thin films , 2001 .

[23]  D. A. Vega,et al.  Ordering mechanisms in two-dimensional sphere-forming block copolymers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Paul C. Fife,et al.  The Nishiura-Ohnishi Free Boundary Problem in the 1D Case , 2001, SIAM J. Math. Anal..

[25]  Desai,et al.  Effects of long-range repulsive interactions on Ostwald ripening. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  F. Otto,et al.  Upper Bounds on Coarsening Rates , 2002 .

[27]  Mark A. Peletier,et al.  Small Volume-Fraction Limit of the Diblock Copolymer Problem: II. Diffuse-Interface Functional , 2010, SIAM J. Math. Anal..

[28]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[29]  Barbara Niethammer,et al.  Screening in Interacting Particle Systems , 2006 .

[30]  Xiaofeng Ren,et al.  Spherical Solutions to a Nonlocal Free Boundary Problem from Diblock Copolymer Morphology , 2008, SIAM J. Math. Anal..

[31]  X. Ren,et al.  On the Derivation of a Density Functional Theory for Microphase Separation of Diblock Copolymers , 2003 .

[32]  D. Hilhorst,et al.  Singular limit of a second order nonlocal parabolic equation of conservative type arising in the micro-phase separation of diblock copolymers , 2003 .

[33]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[34]  Peter W Voorhees,et al.  The theory of Ostwald ripening , 1985 .