Stress recovery and error estimation for shell structures

The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

[1]  R. E. Hobbs,et al.  Automatic adaptive refinement for shell analysis using nine-node assumed strain element , 1997 .

[2]  A. Tessler,et al.  Least-Squares Penalty-Constraint Finite Element Method For Generating Strain Fields From Moire Fringe Patterns , 1987, Optics & Photonics.

[3]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[4]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[5]  T. Belytschko,et al.  A flat triangular shell element with improved membrane interpolation , 1985 .

[6]  G. Dhatt,et al.  A posteriori error estimator based on the second derivative of the displacement field for two-dimensional elastic problems , 1997 .

[7]  A. Tessler,et al.  A C o -anisoparametric three-node shallow shell element , 1990 .

[8]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[9]  Edward Maunder,et al.  Numerical comparison of several a posteriori error estimators for 2D stress analysis , 1993 .

[10]  Ted Belytschko,et al.  Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .

[11]  T. Hughes,et al.  A three-node mindlin plate element with improved transverse shear , 1985 .

[12]  Nils-Erik Wiberg,et al.  SUPERCONVERGENT PATCH RECOVERY IN PROBLEMS OF MIXED FORM , 1997 .

[13]  T. Belytschko,et al.  Enhanced derivative recovery through least square residual penalty , 1994 .

[14]  Hideomi Ohtsubo,et al.  Element by element a posteriori error estimation and improvement of stress solutions for two‐dimensional elastic problems , 1990 .

[15]  Sunil Saigal,et al.  Advances of thin shell finite elements and some applications—version I , 1990 .

[16]  H. R. Riggs,et al.  A variational method for finite element stress recovery and error estimation , 1994 .

[17]  Bijan Boroomand,et al.  An improved REP recovery and the effectivity robustness test , 1997 .

[18]  Alexander Tessler,et al.  A priori identification of shear locking and stiffening in triangular Mindlin elements , 1985 .

[19]  Gouri Dhatt,et al.  AN IMPROVED SUPERCONVERGENT PATCH RECOVERY TECHNIQUE FOR THE AXISYMMETRICAL PROBLEMS , 1998 .

[20]  G. Dhatt,et al.  Modélisation des structures par éléments finis , 1990 .

[21]  Nils-Erik Wiberg,et al.  Patch recovery based on superconvergent derivatives and equilibrium , 1993 .

[22]  T. Belytschko,et al.  Finite element derivative recovery by moving least square interpolants , 1994 .

[23]  H. R. Riggs,et al.  A novel four‐node quadrilateral smoothing element for stress enhancement and error estimation , 1999 .

[24]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[25]  Bijan Boroomand,et al.  RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .

[26]  Force and moment corrections for the warped four-node quadrilateral plane shell element , 1989 .

[27]  J. C. Simo,et al.  Formulation and computational aspects of a stress resultant geometrically exact shell model , 1990 .

[28]  H. R. Riggs,et al.  C1-Continuous stress recovery in finite element analysis , 1997 .

[29]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[30]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[31]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[32]  H. Ronald Riggs,et al.  An improved variational method for finite element stress recovery and a posteriori error estimation , 1998 .