On the norm and covering radius of the first-order Reed-Muller codes
暂无分享,去创建一个
[1] Nicholas J. Patterson,et al. The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.
[2] Xiang-dong Hou. The Reed-Muller Code R(1,7) Is Normal , 1997, Des. Codes Cryptogr..
[3] Xiang-dong Hou. Further results on the covering radii of the Reed-Muller codes , 1993, Des. Codes Cryptogr..
[4] N. J. A. Sloane,et al. On the covering radius of codes , 1985, IEEE Trans. Inf. Theory.
[5] Johannes Mykkeltveit. The covering radius of the (128, 8) Reed-Muller code is 56 (Corresp.) , 1980, IEEE Trans. Inf. Theory.
[6] Philippe Langevin. On the Orphans and Covering Radius of the Reed-Muller Codes , 1991, AAECC.
[7] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[8] O. S. Rothaus,et al. On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.
[9] Xiang-dong Hou. Covering Radius of the Reed-Muller CodeR(1, 7) - A Simpler Proof , 1996, J. Comb. Theory, Ser. A.
[10] Vladimir D. Tonchev,et al. Linear codes and doubly transitive symmetric designs , 1995 .
[11] Gérard D. Cohen,et al. Covering radius 1985-1994 , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.
[12] Tor Helleseth,et al. On the covering radius of binary codes (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[13] Richard A. Brualdi,et al. Orphans of the first order Reed-Muller codes , 1990, IEEE Trans. Inf. Theory.