On the norm and covering radius of the first-order Reed-Muller codes

Let /spl rho/(1,m) and N(1,m) be the covering radius and norm of the first-order Reed-Muller code R(1,m), respectively. It is known that /spl rho/(1,2k+1)/spl les/lower bound [2/sup 2k/-2/sup (2k-1/2)/] and N(1,2k+1)/spl les/2 lower bound [2/sup 2k/-2/sup (2k-1/2)/] (k>0). We prove that /spl rho/(1,2k+1)/spl les/2 lower bound [2/sup 2k-1/-2/sup (2k-3/2)/] and N(1,2k+1)/spl les/4 lower bound [2/sup 2k-1/-2/sup (2k-3/2)/] (k>0). We also discuss the connections of the two new bounds with other coding theoretic problems.

[1]  Nicholas J. Patterson,et al.  The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.

[2]  Xiang-dong Hou The Reed-Muller Code R(1,7) Is Normal , 1997, Des. Codes Cryptogr..

[3]  Xiang-dong Hou Further results on the covering radii of the Reed-Muller codes , 1993, Des. Codes Cryptogr..

[4]  N. J. A. Sloane,et al.  On the covering radius of codes , 1985, IEEE Trans. Inf. Theory.

[5]  Johannes Mykkeltveit The covering radius of the (128, 8) Reed-Muller code is 56 (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[6]  Philippe Langevin On the Orphans and Covering Radius of the Reed-Muller Codes , 1991, AAECC.

[7]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[8]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[9]  Xiang-dong Hou Covering Radius of the Reed-Muller CodeR(1, 7) - A Simpler Proof , 1996, J. Comb. Theory, Ser. A.

[10]  Vladimir D. Tonchev,et al.  Linear codes and doubly transitive symmetric designs , 1995 .

[11]  Gérard D. Cohen,et al.  Covering radius 1985-1994 , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[12]  Tor Helleseth,et al.  On the covering radius of binary codes (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[13]  Richard A. Brualdi,et al.  Orphans of the first order Reed-Muller codes , 1990, IEEE Trans. Inf. Theory.