Alternative quantitative methods in psycholinguistics: Implications for theory and design

We describe three different methods that are appropriate to analyze various types of psycholinguistic data. We discuss some of the strengths and weaknesses of each and their suitability according to characteristics of the data. Methods include analysis of variance (ANOVA), linear mixed-effects modeling (LME) and generalized additive mixed models (GAMM).

[1]  R. Baayen,et al.  Analyzing Reaction Times , 2010 .

[2]  R. Darlington,et al.  Multiple regression in psychological research and practice. , 1968, Psychological bulletin.

[3]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[4]  Yixin Fang,et al.  Asymptotic Equivalence between Cross-Validations and Akaike Information Criteria in Mixed-Effects Models , 2021 .

[5]  D. Barr,et al.  Random effects structure for confirmatory hypothesis testing: Keep it maximal. , 2013, Journal of memory and language.

[6]  Paul E. Meehl,et al.  Nuisance variables and the ex post facto design , 1970 .

[7]  Dev K. Dalal,et al.  Some Common Myths About Centering Predictor Variables in Moderated Multiple Regression and Polynomial Regression , 2012 .

[8]  James A. Breaugh,et al.  Rethinking the Control of Nuisance Variables in Theory Testing , 2006 .

[9]  G. Tutz,et al.  An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. , 2009, Psychological methods.

[10]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[11]  J. Raaijmakers,et al.  How to deal with "The language-as-fixed-effect fallacy": Common misconceptions and alternative solutions. , 1999 .

[12]  D. Mirman,et al.  Statistical and computational models of the visual world paradigm: Growth curves and individual differences. , 2008, Journal of memory and language.

[13]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[14]  R. Baayen A real experiment is a factorial experiment , 2010 .

[15]  M. Bilalic,et al.  Is age really cruel to experts? Compensatory effects of activity. , 2015, Psychology and aging.

[16]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[17]  Lee H. Wurm,et al.  What residualizing predictors in regression analyses does (and what it does not do) , 2014 .

[18]  Arthur E. Hoerl,et al.  Application of ridge analysis to regression problems , 1962 .

[19]  R. Darlington,et al.  Regression and Linear Models , 1990 .

[20]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[21]  H. H. Clark The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. , 1973 .

[22]  N. Anderson Comparison of different populations: resistance to extinction and transfer. , 1963, Psychological review.

[23]  UsingSmoothing SplinesbyXihong Liny,et al.  Inference in Generalized Additive Mixed Models , 1999 .

[24]  Lee H. Wurm,et al.  Lexical dynamics for low-frequency complex words: A regression study across tasks and modalities , 2007 .

[25]  T. Zandt Analysis of Response Time Distributions , 2002 .

[26]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[27]  J. Elashoff,et al.  Multiple Regression in Behavioral Research. , 1974 .

[28]  Reinhold Kliegl,et al.  The cave of Shadows. Addressing the human factor with generalized additive mixed models , 2015, 1511.03120.

[29]  Elisabeth Dévière,et al.  Analyzing linguistic data: a practical introduction to statistics using R , 2009 .

[30]  B. Tabachnick,et al.  Using multivariate statistics, 5th ed. , 2007 .

[31]  Browne,et al.  Cross-Validation Methods. , 2000, Journal of mathematical psychology.

[32]  David A. Belsley Demeaning Conditioning Diagnostics through Centering , 1984 .

[33]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[34]  Joshua F. Wiley,et al.  Growth Curve Analysis and Visualization Using R , 2014 .

[35]  Ronald Christensen,et al.  GRAPHICAL VIEWS OF SUPPRESSION AND MULTICOLLINEARITY IN MULTIPLE LINEAR REGRESSION , 2006 .

[36]  P. Converse,et al.  The Quality of American Life: Perceptions, Evaluations, and Satisfactions , 1976 .

[37]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[38]  H Pashler,et al.  How persuasive is a good fit? A comment on theory testing. , 2000, Psychological review.

[39]  R. Baayen,et al.  Mixed-effects modeling with crossed random effects for subjects and items , 2008 .

[40]  Jonathan B Freeman,et al.  MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method , 2010, Behavior research methods.

[41]  Kerri L. Johnson,et al.  More Than Meets the Eye: Split-Second Social Perception , 2016, Trends in Cognitive Sciences.

[42]  R. Harald Baayen,et al.  Models, forests, and trees of York English: Was/were variation as a case study for statistical practice , 2012, Language Variation and Change.

[43]  Thomas A. Farmer,et al.  Hand in Motion Reveals Mind in Motion , 2011, Front. Psychology.

[44]  Jacolien van Rij,et al.  Autocorrelated Errors in Experimental Data in the Language Sciences: Some Solutions Offered by Generalized Additive Mixed Models , 2016, 1601.02043.