Modified strong tracking unscented Kalman filter for nonlinear state estimation with process model uncertainty

This paper presents a modified strong tracking unscented Kalman filter MSTUKF to address the performance degradation and divergence of the unscented Kalman filter because of process model uncertainty. The MSTUKF adopts the hypothesis testing method to identify process model uncertainty and further introduces a defined suboptimal fading factor into the prediction covariance to decrease the weight of the prior knowledge on filtering solution. The MSTUKF not only corrects the state estimation in the occurrence of process model uncertainty but also avoids the loss of precision for the state estimation in the absence of process model uncertainty. Further, it does not require the cumbersome evaluation of Jacobian matrix involved in the calculation of the suboptimal fading factor. Experimental results and comparison analysis demonstrate the effectiveness of the proposed MSTUKF. Copyright © 2015John Wiley & Sons, Ltd.

[1]  Dah-Jing Jwo,et al.  Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter , 2013 .

[2]  R. Mehra Approaches to adaptive filtering , 1972 .

[3]  Y. Xi,et al.  Extension of Friedland's separate-bias estimation to randomly time-varying bias of nonlinear systems , 1993, IEEE Trans. Autom. Control..

[4]  Yuanqing Xia,et al.  Stochastic stability of the unscented Kalman filter with intermittent observations , 2012, Autom..

[5]  Dah-Jing Jwo,et al.  Adaptive Fuzzy Strong Tracking Extended Kalman Filtering for GPS Navigation , 2007, IEEE Sensors Journal.

[6]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[7]  Xuemin Shen,et al.  Adaptive fading Kalman filter with an application , 1994, Autom..

[8]  Yongmin Zhong,et al.  Windowing and random weighting‐based adaptive unscented Kalman filter , 2015 .

[9]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[10]  Mohamed Boutayeb,et al.  A strong tracking extended Kalman observer for nonlinear discrete-time systems , 1999, IEEE Trans. Autom. Control..

[11]  Li Shao-yuan Autonomous navigation filtering algorithm for spacecraft based on strong tracking UKF , 2011 .

[12]  ZuTao Zhang,et al.  A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking , 2009, Science in China Series F: Information Sciences.

[13]  Yuanqing Xia,et al.  A new continuous-discrete particle filter for continuous-discrete nonlinear systems , 2013, Inf. Sci..

[14]  George Arshal Error equations of inertial navigation , 1987 .

[15]  Hao Yong Strong tracking filter based on unscented transformation , 2010 .

[16]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[17]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[18]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[19]  He You,et al.  Adaptive Tracking Algorithm Based on Modified Strong Tracking Filter , 2006, 2006 CIE International Conference on Radar.

[20]  Xiaofeng Wang,et al.  Networked Strong Tracking Filtering with Multiple Packet Dropouts: Algorithms and Applications , 2014, IEEE Transactions on Industrial Electronics.

[21]  P. Frank,et al.  Strong tracking filtering of nonlinear time-varying stochastic systems with coloured noise: application to parameter estimation and empirical robustness analysis , 1996 .

[22]  Dah-Jing Jwo,et al.  Navigation Integration Using the Fuzzy Strong Tracking Unscented Kalman Filter , 2009 .

[23]  Helmut Schwarz,et al.  Identification of generalized friction for an experimental planar two-link flexible manipulator using strong tracking filter , 1999, IEEE Trans. Robotics Autom..

[24]  Shi Yong,et al.  Adaptive UKF Method with Applications to Target Tracking , 2011 .

[25]  Jiashu Zhang,et al.  A strong tracking nonlinear robust filter for eye tracking , 2010 .

[26]  Seong Yun Cho,et al.  Robust positioning technique in low-cost DR/GPS for land navigation , 2006, IEEE Transactions on Instrumentation and Measurement.

[27]  Donghua Zhou,et al.  Strong tracking filter based adaptive generic model control , 1999 .

[28]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[29]  Yuanqing Xia,et al.  State estimation for asynchronous multirate multisensor nonlinear dynamic systems with missing measurements , 2012 .

[30]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[31]  Chai Yan Application of UKF in Direct Method of Kalman Filter for INS/GPS , 2007 .

[32]  Z. Hang A SUBOPTIMAL MULTIPLE FADING EXTENDED KALMAN FILTER , 1991 .

[33]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[34]  Mario Innocenti,et al.  Experimental application of extended Kalman filtering for sensor validation , 2001, IEEE Trans. Control. Syst. Technol..

[35]  Robert J. Elliott,et al.  Discrete-Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature , 2007, Proceedings of the IEEE.