Uncovering Ubiquitin and Ubiquitin-like Signaling Networks

Proteomes are significantly more complex than genomes and transcriptomes due to protein processing and extensive post-translational modification (PTM) of proteins. Hundreds of different modifications exist. Release 66 of the RESID database(1) (http://www.ebi.ac.uk/RESID/) contains 559 different modifications, including small chemical modifications such as phosphorylation, acetylation, and methylation and modification by small proteins, including ubiquitin and ubiquitin-like (UBL) proteins that are covalently coupled to proteins to regulate their activity. A wide variety of cellular processes are regulated by these reversible modifications, including transcription, replication, cell-cycle progression, and responses to DNA damage. Protein modifications have been studied for many years at the level of single target proteins, but currently available technologies enable proteome-wide studies of these modifications by mass spectrometry (MS).2,3 Powerful proteomics tools are available to study phosphorylation and acetylation at a systems-wide level in a site-specific manner. It is more challenging to study ubiquitin targets and targets for ubiquitin-like proteins at a proteome-wide level in a site-specific manner due to the relatively large size of these modifications, but hundreds of potential target proteins have been uncovered over the past eight years, mainly in a non-site-specific manner. This review is focused on uncovering signaling networks for ubiquitin and ubiquitin-like proteins by mass spectrometry and highlights the site-specific studies published in 2010 and 2011. Site-specific methodologies will likely have a major impact on the ubiquitin field in the near future. The methodology, results, challenges, pitfalls, crosstalk with other PTMs, and future directions are discussed in this review. 1.1. Ubiquitin and Ubiquitin-like Proteins Ubiquitin was first discovered in the mid-1970s, and the 2004 Nobel Prize in Chemistry was awarded for this finding. Ubiquitin is a 76 amino acid protein that is highly conserved from yeast to plants and mammals. Many ubiquitin-like proteins have been uncovered, including Nedd8, small ubiquitin-like modifier 1 (SUMO-1), SUMO-2, SUMO-3, FUBI, HUB1, ISG15, FAT10, URM1, UFM1, Atg12, and Atg8. Ubiquitin-like proteins are also found in prokaryotes and archaea; PUPs are prokaryotic ubiquitin-like proteins, and SAMPs are ubiquitin-like small archaeal modifier proteins. Despite limited sequence homology of some family members with ubiquitin, all ubiquitin family members display structural homology via the characteristic β-grasp ubiquitin fold.4−9 These small proteins are covalently coupled to target proteins via isopeptide bonds between C-terminal diglycine motifs and e-amino groups in lysines of target proteins using an enzymatic cascade that consists of an E1 enzyme,(10) an activator of ubiquitin and UBLs, an E2 enzyme,11,12 and a ligase, known as an E3 enzyme(13) (Figure ​(Figure1).1). Humans express 8 E1 enzymes(10) (including 1 dedicated to ubiquitin, 1 shared between ubiquitin and the UBL FAT10, and 6 dedicated to other UBLs) and 35 active E2 enzymes (including 28 dedicated to ubiquitin, 3 shared between ubiquitin and the UBL ISG15, 3 dedicated to other UBLs, and 1 putative E2).(12) Ubiquitin E3 enzymes are subdivided into HECT-type E3 enzymes (homology to E6AP carboxyl terminus)(14) and RING-type E3 enzymes (really interesting new gene).(15) HECT-type E3 enzymes form thioesters with ubiquitin, whereas RING-type E3 enzymes lack catalytic cysteines. Over 600 human genes encode components of RING-based E3 ligases.(15) Figure 1 Ubiquitylation cascade. Ubiquitin precursors are processed by proteases to generate mature ubiquitin containing a C-terminal diglycine motif for conjugation to target proteins. Three different classes of enzymes are involved: E1, E2, and E3 enzymes. Ubiquitin ...

[1]  P. Cohen,et al.  Will the Ubiquitin System Furnish as Many Drug Targets as Protein Kinases? , 2010, Cell.

[2]  John A Tainer,et al.  A SIM-ultaneous role for SUMO and ubiquitin. , 2008, Trends in biochemical sciences.

[3]  W. Baumeister,et al.  The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria , 1989, FEBS letters.

[4]  Lan Huang,et al.  Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. , 2008, Journal of proteome research.

[5]  G. Barton,et al.  System-Wide Changes to SUMO Modifications in Response to Heat Shock , 2009, Science Signaling.

[6]  R. Klevit,et al.  E2s: structurally economical and functionally replete. , 2011, The Biochemical journal.

[7]  B. Maček,et al.  SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis , 2011, Nature.

[8]  Jun Qin,et al.  ARF-BP1/Mule Is a Critical Mediator of the ARF Tumor Suppressor , 2005, Cell.

[9]  Steven P Gygi,et al.  The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. , 2005, Methods.

[10]  John Rush,et al.  Polyubiquitin Linkage Profiles in Three Models of Proteolytic Stress Suggest the Etiology of Alzheimer Disease* , 2011, The Journal of Biological Chemistry.

[11]  P. P. Di Fiore,et al.  Signaling through monoubiquitination. , 2004, Current topics in microbiology and immunology.

[12]  Kai Stühler,et al.  Proteome-wide identification of mycobacterial pupylation targets , 2010, Molecular systems biology.

[13]  Christine Yu,et al.  Ubiquitin Chain Editing Revealed by Polyubiquitin Linkage-Specific Antibodies , 2008, Cell.

[14]  S. Gygi,et al.  Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[16]  K. Kas,et al.  fau cDNA encodes a ubiquitin-like-S30 fusion protein and is expressed as an antisense sequence in the Finkel-Biskis-Reilly murine sarcoma virus. , 1993, Oncogene.

[17]  Samie R Jaffrey,et al.  Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling , 2010, Nature Biotechnology.

[18]  M. Tatham,et al.  SUMO and transcriptional regulation. , 2004, Seminars in cell & developmental biology.

[19]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[20]  A. Byström,et al.  A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. , 2008, RNA.

[21]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[22]  M. Rapé,et al.  Building ubiquitin chains: E2 enzymes at work , 2009, Nature Reviews Molecular Cell Biology.

[23]  K. Wilkinson,et al.  Protein partners of deubiquitinating enzymes. , 2008, The Biochemical journal.

[24]  L. Jensen,et al.  Mass Spectrometric Analysis of Lysine Ubiquitylation Reveals Promiscuity at Site Level* , 2010, Molecular & Cellular Proteomics.

[25]  James Lowe,et al.  Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets , 2010, Nature Reviews Drug Discovery.

[26]  Zhijian J. Chen,et al.  Reconstitution of the RIG-I Pathway Reveals a Signaling Role of Unanchored Polyubiquitin Chains in Innate Immunity , 2010, Cell.

[27]  Jun Qin,et al.  Ubiquitinated Proteome: Ready for Global?* , 2011, Molecular & Cellular Proteomics.

[28]  Thibault Mayor,et al.  The diversity of ubiquitin recognition: hot spots and varied specificity. , 2010, Molecular cell.

[29]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[30]  M. Rapé,et al.  Mechanism of Ubiquitin-Chain Formation by the Human Anaphase-Promoting Complex , 2008, Cell.

[31]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[32]  John A Tainer,et al.  SUMO‐targeted ubiquitin ligases in genome stability , 2007, The EMBO journal.

[33]  M. Mann,et al.  Decoding signalling networks by mass spectrometry-based proteomics , 2010, Nature Reviews Molecular Cell Biology.

[34]  Ronald T. Hay,et al.  An additional role for SUMO in ubiquitin-mediated proteolysis , 2009, Nature Reviews Molecular Cell Biology.

[35]  Michael J. Sweredoski,et al.  The Steady-State Repertoire of Human SCF Ubiquitin Ligase Complexes Does Not Require Ongoing Nedd8 Conjugation* , 2010, Molecular & Cellular Proteomics.

[36]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[37]  R. Hay,et al.  SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. , 1998, Molecular cell.

[38]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[39]  Keiji Tanaka,et al.  Hub1 is an essential ubiquitin‐like protein without functioning as a typical modifier in fission yeast , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[40]  Pierre Baldi,et al.  A Tandem Affinity Tag for Two-step Purification under Fully Denaturing Conditions , 2006, Molecular & Cellular Proteomics.

[41]  V. Rybin,et al.  Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. , 2008, Journal of molecular biology.

[42]  T. Ohta,et al.  Mass Spectrometric and Mutational Analyses Reveal Lys-6-linked Polyubiquitin Chains Catalyzed by BRCA1-BARD1 Ubiquitin Ligase* , 2004, Journal of Biological Chemistry.

[43]  Jürgen Cox,et al.  A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics , 2009, Nature Protocols.

[44]  Blagoy Blagoev,et al.  A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling , 2003, Nature Biotechnology.

[45]  Xiaoming Tu,et al.  Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. , 2009, The Biochemical journal.

[46]  Li Wang,et al.  Solution structure of Urm1 and its implications for the origin of protein modifiers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Vierstra,et al.  Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis , 2010, Proceedings of the National Academy of Sciences.

[48]  Kongthawat Chairatvit,et al.  Control of cell proliferation via elevated NEDD8 conjugation in oral squamous cell carcinoma , 2007, Molecular and Cellular Biochemistry.

[49]  K. Kito,et al.  A parallel affinity purification method for selective isolation of polyubiquitinated proteins , 2008, Proteomics.

[50]  M. Grant Identification of SUMOylated proteins in neuroblastoma cells after treatment with hydrogen peroxide or ascorbate. , 2010, BMB reports.

[51]  R. Kelley,et al.  Improved Quantitative Mass Spectrometry Methods for Characterizing Complex Ubiquitin Signals , 2010, Molecular & Cellular Proteomics.

[52]  R. Deshaies,et al.  UBXD7 Binds Multiple Ubiquitin Ligases and Implicates p97 in HIF1α Turnover , 2008, Cell.

[53]  C. Brenner,et al.  Yeast Chfr homologs retard cell cycle at G1 and G2/M via Ubc4 and Ubc13/Mms2-dependent ubiquitination , 2008, Cell cycle.

[54]  Bernhard Kuster,et al.  A Proteome-wide Approach Identifies Sumoylated Substrate Proteins in Yeast* , 2004, Journal of Biological Chemistry.

[55]  U. Narayanan,et al.  Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover. , 2011, Cancer research.

[56]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[57]  Steven P. Gygi,et al.  Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics , 2010, Cell.

[58]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[59]  V. Hu The Cell Cycle , 1994, GWUMC Department of Biochemistry Annual Spring Symposia.

[60]  Amanda Doucette,et al.  An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer , 2009, Nature.

[61]  Matthias Mann,et al.  Proteomic snapshot of the EGF-induced ubiquitin network , 2011, Molecular systems biology.

[62]  D. Xirodimas,et al.  Ribosomal proteins are targets for the NEDD8 pathway , 2008, EMBO reports.

[63]  Takeshi Noda,et al.  A Protein Conjugation System in Yeast with Homology to Biosynthetic Enzyme Reaction of Prokaryotes* , 2000, The Journal of Biological Chemistry.

[64]  Linda Hicke,et al.  Ubiquitin-binding domains , 2005, Nature Reviews Molecular Cell Biology.

[65]  Patrick G. A. Pedrioli,et al.  Using mass spectrometry to identify ubiquitin and ubiquitin‐like protein conjugation sites , 2009, Proteomics.

[66]  Pier Paolo Pandolfi,et al.  The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. , 2005, Developmental cell.

[67]  Keiji Tanaka,et al.  Covalent modification of all members of human cullin family proteins by NEDD8 , 1999, Oncogene.

[68]  Jean-Philippe Lambert,et al.  Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry , 2007, Proteomics.

[69]  M. Arntzen,et al.  IsobariQ: software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT. , 2011, Journal of proteome research.

[70]  A. Shevchenko,et al.  Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome , 2001, Science.

[71]  Daniel Figeys,et al.  Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. , 2005, Journal of proteome research.

[72]  G. Gill,et al.  Something about SUMO inhibits transcription. , 2005, Current opinion in genetics & development.

[73]  M. Dasso,et al.  Modification in reverse: the SUMO proteases. , 2007, Trends in biochemical sciences.

[74]  T. Ono,et al.  Histone variant macroH2A1.2 is mono-ubiquitinated at its histone domain. , 2005, Biochemical and biophysical research communications.

[75]  S. Gygi,et al.  A Perturbed Ubiquitin Landscape Distinguishes Between Ubiquitin in Trafficking and in Proteolysis* , 2011, Molecular & Cellular Proteomics.

[76]  S. Elledge,et al.  BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3 , 2003, Nature.

[77]  Zee-Yong Park,et al.  A proteomics approach to identify the ubiquitinated proteins in mouse heart. , 2007, Biochemical and biophysical research communications.

[78]  S. Gygi,et al.  S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains , 2009, The EMBO journal.

[79]  J. Harper,et al.  A Calcium-Regulated MEF2 Sumoylation Switch Controls Postsynaptic Differentiation , 2006, Science.

[80]  Tao Wang,et al.  Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Guillermina Lozano,et al.  Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53 , 1995, Nature.

[82]  F. Melchior,et al.  A Small Ubiquitin-Related Polypeptide Involved in Targeting RanGAP1 to Nuclear Pore Complex Protein RanBP2 , 1997, Cell.

[83]  K. Hofmann,et al.  When ubiquitin meets ubiquitin receptors: a signalling connection , 2003, Nature Reviews Molecular Cell Biology.

[84]  John S Garavelli,et al.  The RESID Database of Protein Modifications as a resource and annotation tool , 2004, Proteomics.

[85]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[86]  H. Kawasaki,et al.  A new NEDD8-ligating system for cullin-4A. , 1998, Genes & development.

[87]  R. Krug,et al.  The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-α/β-induced ubiquitin-like protein , 2004 .

[88]  Xuedong Liu,et al.  A Method of Mapping Protein Sumoylation Sites by Mass Spectrometry Using a Modified Small Ubiquitin-like Modifier 1 (SUMO-1) and a Computational Program*S , 2005, Molecular & Cellular Proteomics.

[89]  M. Tatham,et al.  Polymeric Chains of SUMO-2 and SUMO-3 Are Conjugated to Protein Substrates by SAE1/SAE2 and Ubc9* , 2001, The Journal of Biological Chemistry.

[90]  F. Melchior,et al.  Concepts in sumoylation: a decade on , 2007, Nature Reviews Molecular Cell Biology.

[91]  Brian Raught,et al.  Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software , 2006, Nature Methods.

[92]  D. Toczyski,et al.  Precise destruction: an emerging picture of the APC. , 2006, Genes & development.

[93]  M. Mann,et al.  Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics , 2004, Nature Biotechnology.

[94]  Sebastian A. Wagner,et al.  A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles* , 2011, Molecular & Cellular Proteomics.

[95]  J. Qin,et al.  Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization , 2002, Nature.

[96]  E. Yeh,et al.  SUMOylation and de‐SUMOylation in response to DNA damage , 2011, FEBS letters.

[97]  A. Haas,et al.  Crystal Structure of the Interferon-induced Ubiquitin-like Protein ISG15*[boxs] , 2005, Journal of Biological Chemistry.

[98]  J. Eriksson,et al.  In Vivo Identification of Sumoylation Sites by a Signature Tag and Cysteine-targeted Affinity Purification* , 2010, The Journal of Biological Chemistry.

[99]  Erin K O'Shea,et al.  Identification of Sumoylated Proteins by Systematic Immunoprecipitation of the Budding Yeast Proteome* , 2005, Molecular & Cellular Proteomics.

[100]  R. Krug,et al.  Interferon-Induced ISG15 Conjugation Inhibits Influenza A Virus Gene Expression and Replication in Human Cells , 2009, Journal of Virology.

[101]  Jihui Wu,et al.  Solution structure of human SUMO-3 C47S and its binding surface for Ubc9. , 2005, Biochemistry.

[102]  Matthias Mann,et al.  A Proteomic Study of SUMO-2 Target Proteins* , 2004, Journal of Biological Chemistry.

[103]  E. Solomon,et al.  BRCA1 : BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. , 2004, Human molecular genetics.

[104]  Howard Schulman,et al.  Global changes to the ubiquitin system in Huntington's disease , 2007, Nature.

[105]  Andrew Emili,et al.  Defining the SUMO-modified Proteome by Multiple Approaches in Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[106]  Ming-Jing Hwang,et al.  Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. , 2006, Molecular cell.

[107]  Jong-Bok Yoon,et al.  Mass spectrometric analysis of tumor necrosis factor receptor‐associated factor 1 ubiquitination mediated by cellular inhibitor of apoptosis 2 , 2004, Proteomics.

[108]  Edward L. Huttlin,et al.  A Tissue-Specific Atlas of Mouse Protein Phosphorylation and Expression , 2010, Cell.

[109]  Ivan Dikic,et al.  Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. , 2009, Chemical reviews.

[110]  S. Gygi,et al.  Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology , 2006, Nature Cell Biology.

[111]  H. Virgin,et al.  Interferon-Inducible Ubiquitin E2, Ubc8, Is a Conjugating Enzyme for Protein ISGylation , 2004, Molecular and Cellular Biology.

[112]  G. Sprague,,et al.  Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. , 2003, Molecular biology of the cell.

[113]  I. Matic,et al.  Identification of SUMO target proteins by quantitative proteomics. , 2009, Methods in molecular biology.

[114]  R. Durbin,et al.  Systematic Analysis of Human Protein Complexes Identifies Chromosome Segregation Proteins , 2010, Science.

[115]  D. Xirodimas,et al.  Novel substrates and functions for the ubiquitin-like molecule NEDD8. , 2008, Biochemical Society transactions.

[116]  Nobuhiro Suzuki,et al.  Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation , 2009, Cell.

[117]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[118]  P. Pitha,et al.  Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15 , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Nihon Hassei Seibutsu Gakkai,et al.  Genes to cells , 1996 .

[120]  René Bernards,et al.  TSPYL5 suppresses p53 levels and function by physical interaction with USP7 , 2011, Nature Cell Biology.

[121]  N. Seyfried,et al.  Systematic approach for validating the ubiquitinated proteome. , 2008, Analytical chemistry.

[122]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[123]  N. Sze,et al.  HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[124]  A. Sharrocks,et al.  An extended consensus motif enhances the specificity of substrate modification by SUMO , 2006, The EMBO journal.

[125]  R. Hay,et al.  SUMO-1 Conjugation in Vivo Requires Both a Consensus Modification Motif and Nuclear Targeting* , 2001, The Journal of Biological Chemistry.

[126]  Muyang Li,et al.  A dynamic role of HAUSP in the p53-Mdm2 pathway. , 2004, Molecular cell.

[127]  H. Yokosawa,et al.  Identification and Herc5-mediated ISGylation of novel target proteins. , 2006, Biochemical and biophysical research communications.

[128]  Ullrich Köthe,et al.  Computational protein profile similarity screening for quantitative mass spectrometry experiments , 2010, Bioinform..

[129]  M. Tatham,et al.  Detection of protein SUMOylation in vivo , 2009, Nature Protocols.

[130]  C. Arrowsmith,et al.  Solution structure of the yeast ubiquitin-like modifier protein Hub1 , 2002, Journal of Structural and Functional Genomics.

[131]  A. Ganesan,et al.  Broad spectrum identification of SUMO substrates in melanoma cells , 2007, Proteomics.

[132]  S. Gygi,et al.  PIASy-dependent SUMOylation regulates DNA topoisomerase IIα activity , 2010, The Journal of cell biology.

[133]  Y. Saeki,et al.  SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex , 2011, Nature.

[134]  M. Groettrup,et al.  The Ubiquitin-like Protein FAT10 Forms Covalent Conjugates and Induces Apoptosis* , 2001, The Journal of Biological Chemistry.

[135]  T. Ohta,et al.  Nucleophosmin/B23 Is a Candidate Substrate for the BRCA1-BARD1 Ubiquitin Ligase* , 2004, Journal of Biological Chemistry.

[136]  A. Haas,et al.  A ubiquitin mutant with specific defects in DNA repair and multiubiquitination , 1995, Molecular and cellular biology.

[137]  I. Matic,et al.  Purification and identification of endogenous polySUMO conjugates , 2011, EMBO reports.

[138]  C. Hill,et al.  Crystal Structure of the Human Ubiquitin-like Protein NEDD8 and Interactions with Ubiquitin Pathway Enzymes* , 1998, The Journal of Biological Chemistry.

[139]  M. Mann,et al.  Distinct and Overlapping Sets of SUMO-1 and SUMO-2 Target Proteins Revealed by Quantitative Proteomics*S , 2006, Molecular & Cellular Proteomics.

[140]  Morgan Sheng,et al.  Deconstruction for Reconstruction: The Role of Proteolysis in Neural Plasticity and Disease , 2011, Neuron.

[141]  C. Mummery,et al.  Phosphorylation dynamics during early differentiation of human embryonic stem cells. , 2009, Cell stem cell.

[142]  Keith D Wilkinson,et al.  Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. , 2009, Annual review of biochemistry.

[143]  B. Garcia,et al.  Proteomics , 2011, Journal of biomedicine & biotechnology.

[144]  Mathieu Courcelles,et al.  A Novel Proteomics Approach to Identify SUMOylated Proteins and Their Modification Sites in Human Cells* , 2010, Molecular & Cellular Proteomics.

[145]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[146]  Tom A. Rapoport,et al.  The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol , 2001, Nature.

[147]  J. Yates,et al.  APC16 is a conserved subunit of the anaphase-promoting complex/cyclosome , 2010, Journal of Cell Science.

[148]  M. Peter,et al.  Function and regulation of protein neddylation , 2008, EMBO reports.

[149]  Henning Urlaub,et al.  “ChopNSpice,” a Mass Spectrometric Approach That Allows Identification of Endogenous Small Ubiquitin-like Modifier-conjugated Peptides , 2009, Molecular & Cellular Proteomics.

[150]  A. Sharrocks,et al.  SUMO promotes HDAC-mediated transcriptional repression. , 2004, Molecular cell.

[151]  EUKARYOTIC CELL , 2006, Eukaryotic Cell.

[152]  K. Nakayama,et al.  USP19 Deubiquitinating Enzyme Supports Cell Proliferation by Stabilizing KPC1, a Ubiquitin Ligase for p27Kip1 , 2008, Molecular and Cellular Biology.

[153]  N. Mizushima,et al.  Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. , 1999, Molecular biology of the cell.

[154]  Zhijian J. Chen,et al.  Ubiquitin in NF-kappaB signaling. , 2009, Chemical reviews.

[155]  J. Huibregtse,et al.  The ISG15 Conjugation System Broadly Targets Newly Synthesized Proteins: Implications for the Antiviral Function of ISG15 , 2010, Molecular Cell.

[156]  S. Gygi,et al.  Ubiquitin-Like Protein Involved in the Proteasome Pathway of Mycobacterium tuberculosis , 2008, Science.

[157]  Troels Z. Kristiansen,et al.  K63‐specific deubiquitination by two JAMM/MPN+ complexes: BRISC‐associated Brcc36 and proteasomal Poh1 , 2009, The EMBO journal.

[158]  Toshihide Nishimura,et al.  Large‐scale analysis of the human ubiquitin‐related proteome , 2005, Proteomics.

[159]  R. Aebersold,et al.  Mass spectrometry in proteomics. , 2001, Chemical reviews.

[160]  Jaclyn R. Gareau,et al.  The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition , 2010, Nature Reviews Molecular Cell Biology.

[161]  Mary B. Kroetz,et al.  The Yeast Hex3·Slx8 Heterodimer Is a Ubiquitin Ligase Stimulated by Substrate Sumoylation* , 2007, Journal of Biological Chemistry.

[162]  M. MacCoss,et al.  Quantitative Profiling of Ubiquitylated Proteins Reveals Proteasome Substrates and the Substrate Repertoire Influenced by the Rpn10 Receptor Pathway*S , 2007, Molecular & Cellular Proteomics.

[163]  Ivan Dikic,et al.  Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity , 2010, Biological chemistry.

[164]  H. Hayashi,et al.  Thio-modification of Yeast Cytosolic tRNA Requires a Ubiquitin-related System That Resembles Bacterial Sulfur Transfer Systems* , 2008, Journal of Biological Chemistry.

[165]  F. Melchior,et al.  Molecular Characterization of the SUMO-1 Modification of RanGAP1 and Its Role in Nuclear Envelope Association , 1998, The Journal of cell biology.

[166]  Steven P. Gygi,et al.  A Proteomic Strategy for Gaining Insights into Protein Sumoylation in Yeast*S , 2005, Molecular & Cellular Proteomics.

[167]  A. J. Gandolfi,et al.  Proteomic identification of ubiquitinated proteins from human cells expressing His‐tagged ubiquitin , 2005, Proteomics.

[168]  M. Tatham,et al.  High-stringency tandem affinity purification of proteins conjugated to ubiquitin-like moieties , 2010, Nature Protocols.

[169]  B. Clurman,et al.  Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. , 1999, Genes & development.

[170]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[171]  D. Ecker,et al.  Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant , 1994, Molecular and cellular biology.

[172]  M. Mann,et al.  Identification of the receptor component of the IκBα–ubiquitin ligase , 1998, Nature.

[173]  R. Krug,et al.  Herc5, an Interferon-induced HECT E3 Enzyme, Is Required for Conjugation of ISG15 in Human Cells* , 2006, Journal of Biological Chemistry.

[174]  M. Mann,et al.  Higher-energy C-trap dissociation for peptide modification analysis , 2007, Nature Methods.

[175]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[176]  F. Melchior,et al.  Structure determination of the small ubiquitin-related modifier SUMO-1. , 1998, Journal of molecular biology.

[177]  K Nasmyth,et al.  Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. , 1998, Science.

[178]  A. Deelder,et al.  Positively charged amino acids flanking a sumoylation consensus tetramer on the 110kDa tri-snRNP component SART1 enhance sumoylation efficiency. , 2010, Journal of proteomics.

[179]  Matthias Mann,et al.  A Dual Pressure Linear Ion Trap Orbitrap Instrument with Very High Sequencing Speed* , 2009, Molecular & Cellular Proteomics.

[180]  J Wade Harper,et al.  Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. , 2009, Molecular cell.

[181]  N. Seyfried,et al.  A Novel Strategy to Isolate Ubiquitin Conjugates Reveals Wide Role for Ubiquitination during Neural Development , 2010, Molecular & Cellular Proteomics.

[182]  E. Borden,et al.  High-throughput Immunoblotting , 2003, The Journal of Biological Chemistry.

[183]  F. Striebel,et al.  The mycobacterial Mpa–proteasome unfolds and degrades pupylated substrates by engaging Pup's N‐terminus , 2010, The EMBO journal.

[184]  A. Heck,et al.  Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. , 2004, Analytical chemistry.

[185]  Jun Wu,et al.  Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells , 2008, Proteomics.

[186]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[187]  G. Blobel,et al.  A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex , 1996, The Journal of cell biology.

[188]  K. Kito,et al.  Accumulation of NEDD8 in neuronal and glial inclusions of neurodegenerative disorders , 2005, Neuropathology and applied neurobiology.

[189]  M. Sutter,et al.  Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes , 2009, Nature Structural &Molecular Biology.

[190]  J. Wade Harper,et al.  Structural Complexity in Ubiquitin Recognition , 2006, Cell.

[191]  During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation , 2009, The Journal of cell biology.

[192]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[193]  A. Varshavsky The N-end rule , 1992, Cell.

[194]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[195]  A. McCormack,et al.  Quantitative Membrane Proteomics Reveals New Cellular Targets of Viral Immune Modulators , 2006, PLoS pathogens.

[196]  G. Salvesen,et al.  Urm1 couples sulfur transfer to ubiquitin-like protein function in oxidative stress , 2011, Proceedings of the National Academy of Sciences.

[197]  Matthias Mann,et al.  IKK-1 and IKK-2: Cytokine-Activated IκB Kinases Essential for NF-κB Activation , 1997 .

[198]  R. Oughtred,et al.  Characterization of E3Histone, a Novel Testis Ubiquitin Protein Ligase Which Ubiquitinates Histones , 2005, Molecular and Cellular Biology.

[199]  F. Damberger,et al.  Solution structure and activation mechanism of ubiquitin-like small archaeal modifier proteins. , 2011, Journal of molecular biology.

[200]  Viji M. Draviam,et al.  Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities , 2007, Nature.

[201]  M. Mann,et al.  In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy*S , 2008, Molecular & Cellular Proteomics.

[202]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[203]  R. Schmidt,et al.  Identification of Interferon-Stimulated Gene 15 as an Antiviral Molecule during Sindbis Virus Infection In Vivo , 2005, Journal of Virology.

[204]  K. Walters,et al.  Prokaryotic ubiquitin-like protein pup is intrinsically disordered. , 2009, Journal of molecular biology.

[205]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[206]  S. Akira,et al.  Involvement of linear polyubiquitylation of NEMO in NF-κB activation , 2009, Nature Cell Biology.

[207]  A. Jochemsen,et al.  MDMX: a novel p53‐binding protein with some functional properties of MDM2. , 1996, The EMBO journal.

[208]  Daniel J Klionsky,et al.  The Atg8 and Atg12 ubiquitin‐like conjugation systems in macroautophagy , 2008, EMBO reports.

[209]  David H Russell,et al.  A Universal Strategy for Proteomic Studies of SUMO and Other Ubiquitin-like Modifiers*S , 2005, Molecular & Cellular Proteomics.

[210]  Lawrence A. Donehower,et al.  Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53 , 1995, Nature.

[211]  Jun Qin,et al.  A Data Set of Human Endogenous Protein Ubiquitination Sites* , 2010, Molecular & Cellular Proteomics.

[212]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[213]  M. Mann,et al.  Global and site-specific quantitative phosphoproteomics: principles and applications. , 2009, Annual review of pharmacology and toxicology.

[214]  Keiji Tanaka,et al.  A novel protein‐conjugating system for Ufm1, a ubiquitin‐fold modifier , 2004, The EMBO journal.

[215]  Patrick G. A. Pedrioli,et al.  Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA , 2009, Nature.

[216]  Florian Gnad,et al.  Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. , 2010, Molecular cell.

[217]  Steven P Gygi,et al.  A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[218]  M. Mann,et al.  Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry , 2008, Nature Methods.

[219]  Rei-Lin Kuo,et al.  ISG15 conjugation system targets the viral NS1 protein in influenza A virus–infected cells , 2010, Proceedings of the National Academy of Sciences.

[220]  H. Ploegh,et al.  A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway , 2008, Proceedings of the National Academy of Sciences.

[221]  L. Pintard,et al.  Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization , 2009, Cellular and Molecular Life Sciences.

[222]  Patrick Dowd,et al.  The ubiquitin ligase COP1 is a critical negative regulator of p53 , 2004, Nature.

[223]  René Bernards,et al.  A Genomic and Functional Inventory of Deubiquitinating Enzymes , 2005, Cell.

[224]  C. Lima,et al.  A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 Ubc9 , 2009, Nature Structural &Molecular Biology.

[225]  G. Blobel,et al.  SUMO-1 Modification and Its Role in Targeting the Ran GTPase-activating Protein, RanGAP1, to the Nuclear Pore Complex , 1998, The Journal of cell biology.

[226]  Leonard I Zon,et al.  Cell stem cell. , 2007, Cell stem cell.

[227]  H. Clevers,et al.  Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. , 2010, Molecular cell.

[228]  H. Shih,et al.  SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[229]  William Stafford Noble,et al.  Multiple functional categories of proteins identified in an in vitro cellular ubiquitin affinity extract using shotgun peptide sequencing. , 2003, Journal of proteome research.

[230]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[231]  N. Moran,et al.  RN181, a novel ubiquitin E3 ligase that interacts with the KVGFFKR motif of platelet integrin alpha(IIb)beta3. , 2008, Biochemical and biophysical research communications.

[232]  Patrick G. A. Pedrioli,et al.  Urm1 at the crossroad of modifications , 2008, EMBO reports.

[233]  J. Seol,et al.  Deubiquitination of Chfr, a checkpoint protein, by USP7/HAUSP regulates its stability and activity. , 2007, Biochemical and biophysical research communications.

[234]  H. Saitoh,et al.  Functional Heterogeneity of Small Ubiquitin-related Protein Modifiers SUMO-1 versus SUMO-2/3* , 2000, The Journal of Biological Chemistry.

[235]  J. Yates,et al.  Improved identification of SUMO attachment sites using C-terminal SUMO mutants and tailored protease digestion strategies. , 2006, Journal of proteome research.

[236]  Matthias Mann,et al.  Innovations: Functional and quantitative proteomics using SILAC , 2006, Nature Reviews Molecular Cell Biology.

[237]  J. Yates,et al.  Npr2, Yeast Homolog of the Human Tumor Suppressor NPRL2, Is a Target of Grr1 Required for Adaptation to Growth on Diverse Nitrogen Sources , 2010, Eukaryotic Cell.

[238]  K. Cadwell,et al.  Ubiquitination on Nonlysine Residues by a Viral E3 Ubiquitin Ligase , 2005, Science.

[239]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[240]  P. Lengyel,et al.  Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells , 1979, Nature.

[241]  M. Mann,et al.  The Ubiquitin-Proteasome System Is a Key Component of the SUMO-2/3 Cycle*S , 2008, Molecular & Cellular Proteomics.

[242]  J. Qin,et al.  Trim24 targets endogenous p53 for degradation , 2009, Proceedings of the National Academy of Sciences.

[243]  Jeffrey J. Jones,et al.  A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. , 2008, Journal of proteome research.

[244]  R. Honda,et al.  Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1). , 2000, Biochemical and biophysical research communications.

[245]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[246]  N. Perkins,et al.  P300 transcriptional repression is mediated by SUMO modification. , 2003, Molecular cell.

[247]  Hirofumi Tanaka,et al.  Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 , 1997, FEBS letters.

[248]  K. Loeb,et al.  The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. , 1992, The Journal of biological chemistry.

[249]  A. Matsuura,et al.  Apg10p, a novel protein‐conjugating enzyme essential for autophagy in yeast , 1999, The EMBO journal.

[250]  R. Fanelli,et al.  Conclusions and Future Perspectives , 2011 .

[251]  D. Ecker,et al.  A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. , 1989, Science.

[252]  R. Baer,et al.  The BRCA1/BARD1 Heterodimer Assembles Polyubiquitin Chains through an Unconventional Linkage Involving Lysine Residue K6 of Ubiquitin* , 2003, Journal of Biological Chemistry.

[253]  Hyun Kook Cho,et al.  Cutting Edge: Autoantigen Ro52 Is an Interferon Inducible E3 Ligase That Ubiquitinates IRF-8 and Enhances Cytokine Expression in Macrophages1 , 2007, The Journal of Immunology.

[254]  Valerie Reinke,et al.  Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53 , 2001, Nature Genetics.

[255]  K. Hagino-Yamagishi,et al.  [Oncogene]. , 2019, Gan to kagaku ryoho. Cancer & chemotherapy.

[256]  Y. Lam,et al.  A Proteomic Screen for Nucleolar SUMO Targets Shows SUMOylation Modulates the Function of Nop5/Nop58 , 2010, Molecular cell.

[257]  V. Chau,et al.  Nedd8 Modification of Cul-1 Activates SCFβTrCP-Dependent Ubiquitination of IκBα , 2000, Molecular and Cellular Biology.

[258]  M. Tatham,et al.  RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation , 2008, Nature Cell Biology.

[259]  Yasuhito Abe,et al.  NEDD8 protein is involved in ubiquitinated inclusion bodies , 2003, The Journal of pathology.

[260]  E. Yeh,et al.  SUMOylation and De-SUMOylation: Wrestling with Life's Processes* , 2009, Journal of Biological Chemistry.

[261]  A. Israël,et al.  Itch/AIP4 mediates Deltex degradation through the formation of K29‐linked polyubiquitin chains , 2006, EMBO reports.

[262]  L. Sistonen,et al.  PDSM, a motif for phosphorylation-dependent SUMO modification. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[263]  D. Rotin,et al.  Physiological functions of the HECT family of ubiquitin ligases , 2009, Nature Reviews Molecular Cell Biology.

[264]  G. Dittmar,et al.  Role of a Ubiquitin-Like Modification in Polarized Morphogenesis , 2002, Science.

[265]  G. Sprague,,et al.  Attachment of the Ubiquitin-Related Protein Urm1p to the Antioxidant Protein Ahp1p , 2003, Eukaryotic Cell.

[266]  M. MacCoss,et al.  Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery , 2006, Nature.

[267]  A. Malovannaya,et al.  OTU Domain-containing Ubiquitin Aldehyde-binding Protein 1 (OTUB1) Deubiquitinates Estrogen Receptor (ER) α and Affects ERα Transcriptional Activity* , 2009, The Journal of Biological Chemistry.

[268]  Iain S. Young,et al.  Degradative proteomics and disease mechanisms , 2010, Proteomics. Clinical applications.

[269]  T. Hunter,et al.  Transforming gene product of Rous sarcoma virus phosphorylates tyrosine , 1980, Proceedings of the National Academy of Sciences.

[270]  L. Aravind,et al.  The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains , 2006, Genome Biology.

[271]  David J Studholme,et al.  Multidimensional Protein Identification Technology (MudPIT) Analysis of Ubiquitinated Proteins in Plants*S , 2007, Molecular & Cellular Proteomics.

[272]  V. Lang,et al.  Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin‐binding entities , 2009, EMBO reports.

[273]  Guillermina Lozano,et al.  Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation , 2003, Cell.

[274]  A. Chadli THE CANCER CELL , 1924, La Presse medicale.

[275]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[276]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[277]  R. Krug,et al.  Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)‐induced ubiquitin‐like ISG15 protein , 2001, The EMBO journal.

[278]  Hiroshi Nakamura,et al.  Determination of Organic Phosphates by Column-Switching High Performance Anion-Exchange Chromatography Using On-Line Preconcentration on Titania , 1997 .

[279]  Sixue Chen,et al.  Ubiquitin-like Small Archaeal Modifier Proteins (SAMPs) in Haloferax volcanii , 2010, Nature.

[280]  Wei Gu,et al.  Modes of p53 Regulation , 2009, Cell.

[281]  Keiji Tanaka,et al.  The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice , 2001, The Journal of cell biology.

[282]  Christine Yu,et al.  K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. , 2010, Molecular cell.

[283]  Anthony W. Purcell,et al.  Linear ubiquitination prevents inflammation and regulates immune signalling , 2011, Nature.

[284]  Tao Wang,et al.  Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation , 2010, Nature Structural &Molecular Biology.

[285]  G. Jenster,et al.  Negative Modulation of Androgen Receptor Transcriptional Activity by Daxx , 2004, Molecular and Cellular Biology.

[286]  S. Jentsch,et al.  The ubiquitin‐like protein HUB1 forms SDS‐resistant complexes with cellular proteins in the absence of ATP , 2003, EMBO reports.

[287]  M. Ohh,et al.  NEDD8 pathways in cancer, Sine Quibus Non. , 2011, Cancer cell.

[288]  S. Jentsch,et al.  Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier , 2011, Proceedings of the National Academy of Sciences.

[289]  R. N. Harty,et al.  ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity , 2008, Proceedings of the National Academy of Sciences.

[290]  John Calvin Reed,et al.  Identification of ubiquitination sites on the X-linked inhibitor of apoptosis protein. , 2003, The Biochemical journal.

[291]  E. Borden,et al.  Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. , 2005, Biochemical and biophysical research communications.

[292]  Stephen J. Elledge,et al.  The SCFβ-TRCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro , 1999 .

[293]  K. Kito,et al.  A proteomic screen reveals the mitochondrial outer membrane protein Mdm34p as an essential target of the F‐box protein Mdm30p , 2008, Genes to cells : devoted to molecular & cellular mechanisms.

[294]  H. Timmers,et al.  The family of ubiquitin‐conjugating enzymes (E2s): deciding between life and death of proteins , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[295]  M. Mann,et al.  Precision proteomics: The case for high resolution and high mass accuracy , 2008, Proceedings of the National Academy of Sciences.

[296]  J. Maupin-Furlow,et al.  Proteasomes from structure to function: perspectives from Archaea. , 2006, Current topics in developmental biology.