A mathematical perspective on density functional perturbation theory

This article is concerned with the mathematical analysis of the perturbation method for extended Kohn-Sham models, in which fractional occupation numbers are allowed. All our results are established in the framework of the reduced Hartree-Fock (rHF) model, but our approach can be used to study other kinds of extended Kohn-Sham models, under some assumptions on the mathematical structure of the exchange- correlation functional. The classical results of Density Functional Perturbation Theory in the non-degenerate case (that is when the Fermi level is not a degenerate eigenvalue of the mean-field Hamiltonian) are formalized, and a proof of Wigner's (2n + 1) rule is provided. We then focus on the situation when the Fermi level is a degenerate eigenvalue of the rHF Hamiltonian, which had not been considered so far.

[1]  Gabriel Turinici,et al.  Quadratically convergent algorithm for fractional occupation numbers in density functional theory , 2003 .

[2]  Y. Maday,et al.  Numerical analysis of the planewave discretization of orbital-free and Kohn-Sham models Part I: The Thomas-Fermi-von Weizacker model , 2009, 0909.1464.

[3]  Jan Philip Solovej,et al.  Proof of the ionization conjecture in a reduced Hartree-Fock model , 1991 .

[4]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[5]  Barry Simon,et al.  Fifty years of eigenvalue perturbation theory , 1991 .

[6]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[7]  Tosio Kato Perturbation theory for linear operators , 1966 .

[8]  E. Lieb,et al.  A positive density analogue of the Lieb-Thirring inequality , 2011, 1108.4246.

[9]  M. Griesemer,et al.  Unique Solutions to Hartree–Fock Equations for Closed Shell Atoms , 2010, 1012.5179.

[10]  Idempotent Semimodules,et al.  Analysis of Operators on , 2007 .

[11]  X. Gonze,et al.  Adiabatic density-functional perturbation theory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  Claude Le Bris,et al.  ON THE PERTURBATION METHODS FOR SOME NONLINEAR QUANTUM CHEMISTRY MODELS , 1998 .

[13]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung , 1937 .

[14]  E Weinan,et al.  The Kohn-Sham Equation for Deformed Crystals , 2012 .

[15]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[16]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[17]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[18]  T. Hoffmann-Ostenhof,et al.  "Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules , 1977 .

[19]  L. Rayleigh,et al.  The theory of sound , 1894 .

[20]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[21]  Julian Schwinger,et al.  ANGULAR MOMENTUM , 2010 .

[22]  B. Simon Trace ideals and their applications , 1979 .

[23]  Bach,et al.  There are no unfilled shells in unrestricted Hartree-Fock theory. , 1994, Physical review letters.

[24]  E. Cancès,et al.  Existence of minimizers for Kohn-Sham models in quantum chemistry , 2009 .

[25]  Mathieu Lewin,et al.  The Dielectric Permittivity of Crystals in the Reduced Hartree–Fock Approximation , 2009, 0903.1944.

[26]  M. Orio,et al.  Density functional theory , 2009, Photosynthesis Research.

[27]  Eric Cances,et al.  Non-perturbative embedding of local defects in crystalline materials , 2007, 0706.0794.

[28]  E. Chiumiento,et al.  Stiefel and Grassmann manifolds in quantum chemistry , 2011, 1105.1661.

[29]  J. Ángyán Wigner’s (2n + 1) rule for nonlinear Schrödinger equations , 2009 .

[30]  Gonze,et al.  Perturbation expansion of variational principles at arbitrary order. , 1995, Physical review. A, Atomic, molecular, and optical physics.