Stereo-Based Ego-Motion Estimation Using Pixel Tracking and Iterative Closest Point

In this paper, we present a stereovision algorithm for real-time 6DoF ego-motion estimation, which integrates image intensity information and 3D stereo data in the well-known Iterative Closest Point (ICP) scheme. The proposed method addresses a basic problem of standard ICP, i.e. its inability to perform the segmentation of data points and to deal with large displacements. Neither a-priori knowledge of the motion nor inputs from other sensors are required, while the only assumption is that the scene always contains visually distinctive features which can be tracked over subsequent stereo pairs. This generates what is usually called Visual Odometry. The paper details the various steps of the algorithm and presents the results of experimental tests performed with an allterrain mobile robot, proving the method to be as accurate as effective for autonomous navigation purposes.

[1]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[2]  Sebastian Weik,et al.  Registration of 3-D partial surface models using luminance and depth information , 1997, Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134).

[3]  Simon Lacroix,et al.  Position estimation in outdoor environments using pixel tracking and stereovision , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  M. Deans,et al.  Visual target tracking for rover-based planetary exploration , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[6]  Joachim Hertzberg,et al.  An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments , 2003, Robotics Auton. Syst..

[7]  Juan Manuel Sáez,et al.  A global 3D map-building approach using stereo vision , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Stergios I. Roumeliotis,et al.  Augmenting inertial navigation with image-based motion estimation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[10]  Joachim Hertzberg,et al.  Heuristic-Based Laser Scan Matching for Outdoor 6D SLAM , 2005, KI.

[11]  Roland Siegwart,et al.  Inertial and 3D-odometry fusion in rough terrain - towards real 3D navigation , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[12]  J. Borenstein,et al.  Experimental results from FLEXnav: an expert rule-based dead-reckoning system for Mars rovers , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[13]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  Agusti Solanas,et al.  3D simultaneous localization and modeling from stereo vision , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[16]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2005, Machine Vision and Applications.

[17]  Saied Moezzi,et al.  Dynamic stereo vision , 1992 .

[18]  Peter I. Corke,et al.  Visual Motion Estimation for an Autonomous Underwater Reef Monitoring Robot , 2005, FSR.

[19]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Peter I. Corke,et al.  Omnidirectional visual odometry for a planetary rover , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[21]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Richard A. Volz,et al.  Estimating 3-D location parameters using dual number quaternions , 1991, CVGIP Image Underst..

[23]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[24]  Sebastian Thrun,et al.  Simultaneous localization and mapping with active stereo vision , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[25]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[26]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.