Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization

In this paper, we establish necessary and sufficient conditions to characterize weakly efficient solutions in nonsmooth quasiconvex multiobjective programming. The results are proved in terms of the Greenberg–Pierskalla, Penot, Plastria, Gutiérrez and Suzuki–Kuroiwa subdifferentials. The established results can be used to provide powerful tools for sketching numerical algorithms and deriving duality results.

[1]  F. Plastria Lower subdifferentiable functions and their minimization by cutting planes , 1985 .

[2]  Nicolas Hadjisavvas,et al.  An Appropriate Subdifferential for Quasiconvex Functions , 2002, SIAM J. Optim..

[3]  J. P. Crouzeix,et al.  About differentiability of order one of quasiconvex functions onRn , 1982 .

[4]  Daishi Kuroiwa,et al.  Optimality conditions and the basic constraint qualification for quasiconvex programming , 2011 .

[5]  J. Penot,et al.  Characterization of Solution Sets of Quasiconvex Programs , 2003 .

[6]  J. Penot What is quasiconvex analysis? , 2000 .

[7]  B. Mordukhovich Variational Analysis and Applications , 2018 .

[8]  M. Soleimani-damaneh,et al.  Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems , 2016 .

[9]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization , 2014 .

[10]  Majid Soleimani-damaneh,et al.  Infinite Alternative Theorems and Nonsmooth Constraint Qualification Conditions , 2012 .

[11]  Jean-Paul Penot,et al.  Surrogate Programming and Multipliers in Quasi-convex Programming , 2003, SIAM J. Control. Optim..

[12]  Adil M. Bagirov,et al.  Introduction to Nonsmooth Optimization: Theory, Practice and Software , 2014 .

[13]  Jean-Paul Penot,et al.  Optimality Conditions for Quasiconvex Programs , 2006, SIAM J. Optim..

[14]  Majid Soleimani-Damaneh,et al.  Robustness in Deterministic Vector Optimization , 2018, J. Optim. Theory Appl..

[15]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[16]  James V. Burke,et al.  Characterization of solution sets of convex programs , 1991, Oper. Res. Lett..

[17]  Jyrki Wallenius,et al.  An operational test for the existence of a consistent increasing quasi-concave value function , 2019, Eur. J. Oper. Res..

[18]  J. Penot Are Generalized Derivatives Sseful for Generalized Convex Functions , 1998 .

[19]  Jean-Paul Penot,et al.  On Quasi-Convex Duality , 1990, Math. Oper. Res..

[20]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[21]  F. Clarke Functional Analysis, Calculus of Variations and Optimal Control , 2013 .

[22]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[23]  Satoshi Suzuki,et al.  Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential , 2015, J. Glob. Optim..

[24]  Majid Soleimani-Damaneh,et al.  Robustness in nonsmooth nonlinear multi-objective programming , 2015, Eur. J. Oper. Res..

[25]  J. M. Gutiérrez A generalization of the quasiconvex optimization problem. , 1997 .

[26]  M. S. Bazaraa,et al.  Nonlinear Programming , 1979 .