Simply terminating rewrite systems with long derivations
暂无分享,去创建一个
[1] Dieter Hofbauer. Termination Proofs by Multiset Path Orderings Imply Primitive Recursive Derivation Lengths , 1992, Theor. Comput. Sci..
[2] Jean-Pierre Jouannaud,et al. Problems in Rewriting III , 1995, RTA.
[3] Stanley S. Wainer,et al. Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy , 1972, Journal of Symbolic Logic.
[4] Andreas Weiermann,et al. A Uniform Approach to Fundamental Sequences and Hierarchies , 1994, Math. Log. Q..
[5] Hans Zantema,et al. Total Termination of Term Rewriting , 1993, RTA.
[6] Andreas Weiermann,et al. Termination Proofs for Term Rewriting Systems by Lexicographic Path Orderings Imply Multiply Recursive Derivation Lengths , 1995, Theor. Comput. Sci..
[7] J. Paris,et al. Accessible Independence Results for Peano Arithmetic , 1982 .
[8] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[9] H. E. Rose. Subrecursion: Functions and Hierarchies , 1984 .
[10] Jean-Pierre Jouannaud,et al. Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[11] Nachum Dershowitz,et al. An On-line Problem Database , 1998, RTA.
[12] Hélène Touzet. Propriétés combinatoires pour la terminaison de systèmes de réécriture. (Combinatorial properties for termination in term rewriting theory) , 1997 .
[13] Hélène Touzet,et al. Encoding the Hydra Battle as a Rewrite System , 1998, MFCS.
[14] E. A. Cichon,et al. Termination orderings and complexity characterisations , 1993 .
[15] Andreas Weiermann,et al. Complexity Bounds for Some Finite Forms of Kruskal's Theorem , 1994, J. Symb. Comput..
[16] O. Veblen. Continuous increasing functions of finite and transfinite ordinals , 1908 .