Isogeometric Analysis: new stable elements for the Stokes equation
暂无分享,去创建一个
[1] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[2] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[3] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[4] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[5] Jean-Frédéric Gerbeau,et al. Spurious velocities in the steady flow of an incompressible fluid subjected to external forces , 1997 .
[6] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[7] Mark A. Christon,et al. The consistency of pressure‐gradient approximations used in multi‐dimensional shock hydrodynamics , 2009 .
[8] P. Hood,et al. A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .
[9] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[10] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[11] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[12] Bernardo Cockburn,et al. Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..
[13] G. Sangalli,et al. A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .
[14] Tom Lyche,et al. T-spline Simplication and Local Renement , 2004 .
[15] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[16] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[17] Alyn P. Rockwood,et al. ACM SIGGRAPH 2003 Papers , 2003, SIGGRAPH 2003.
[18] Bernardo Cockburn,et al. Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..
[19] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[20] Thomas A. Manteuffel,et al. A robust multilevel approach for minimizing H(div)-dominated functionals in an H1-conforming finite element space , 2004, Numer. Linear Algebra Appl..
[21] Guido Kanschat,et al. A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..
[22] Guido Kanschat,et al. A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..