Characterizing the Stabilization Size for Semi-Implicit Fourier-Spectral Method to Phase Field Equations

Recent results in the literature provide computational evidence that stabilized semi-implicit time-stepping method can efficiently simulate phase field problems involving fourth-order nonlinear dif- fusion, with typical examples like the Cahn-Hilliard equation and the thin film type equation. The up-to-date theoretical explanation of the numerical stability relies on the assumption that the deriva- tive of the nonlinear potential function satisfies a Lipschitz type condition, which in a rigorous sense, implies the boundedness of the numerical solution. In this work we remove the Lipschitz assumption on the nonlinearity and prove unconditional energy stability for the stabilized semi-implicit time-stepping methods. It is shown that the size of stabilization term depends on the initial energy and the perturba- tion parameter but is independent of the time step. The corresponding error analysis is also established under minimal nonlinearity and regularity assumptions.

[1]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[2]  Zhonghua Qiao,et al.  Gradient bounds for a thin film epitaxy equation , 2014 .

[3]  R. Schwoebel Step motion on crystal surfaces , 1968 .

[4]  Keith Promislow,et al.  High accuracy solutions to energy gradient flows from material science models , 2014, J. Comput. Phys..

[5]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Tao Tang,et al.  An Adaptive Time-Stepping Strategy for the Molecular Beam Epitaxy Models , 2011, SIAM J. Sci. Comput..

[7]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Jean Bourgain,et al.  Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces , 2013, 1307.7090.

[9]  Jie Shen,et al.  Decoupled Energy Stable Schemes for Phase-Field Models of Two-Phase Complex Fluids , 2014, SIAM J. Sci. Comput..

[10]  Xinlong Feng,et al.  Stabilized Crank-Nicolson/Adams-Bashforth Schemes for Phase Field Models , 2013 .

[11]  Qiang Du,et al.  A Fourier Spectral Moving Mesh Method for the Cahn-Hilliard Equation with Elasticity , 2009 .

[12]  Héctor D. Ceniceros,et al.  Three-dimensional, fully adaptive simulations of phase-field fluid models , 2010, J. Comput. Phys..

[13]  Bo Li,et al.  Center for Scientific Computation And Mathematical Modeling , 2003 .

[14]  Dong Li,et al.  On a frequency localized Bernstein inequality and some generalized Poincare-type inequalities , 2012, 1212.0183.

[15]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[16]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[17]  Steven M. Wise,et al.  Unconditionally stable schemes for equations of thin film epitaxy , 2010 .

[18]  Hsiang-Wei Lu,et al.  A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations , 2010, Discrete & Continuous Dynamical Systems - A.

[19]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[20]  Richard L. Schwoebel,et al.  Step Motion on Crystal Surfaces. II , 1966 .

[21]  Tao Tang,et al.  Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..

[22]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[23]  A. Bertozzi,et al.  Unconditionally stable schemes for higher order inpainting , 2011 .

[24]  Piotr Rybka,et al.  Convergence of solutions to cahn-hilliard equation , 1999 .

[25]  Keith Promislow,et al.  Variational Models of Network Formation and Ion Transport: Applications to Perfluorosulfonate Ionomer Membranes , 2012 .

[26]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[27]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[28]  Jean Bourgain,et al.  Strong illposedness of the incompressible Euler equation in integer Cm spaces , 2014, Geometric and Functional Analysis.

[29]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .