Fourier integral operators with fold singularities.

are locally diffeomorphisms. In particular dx = dY-=d. Then &εΙ(Χ,Υ,<€') maps ^a.compOO into L> tloc(X) if β ^ a — μ. This was shown by H rmander s a consequence of the calculus in [7]. By composing 3F with a fractional integral operator it is easy to see that ^G/*(jr,r,<jf') maps La,comp into I£Ioc, 2 ^ < 7 < o o , if β £ αμd/2 + d/q. More general if dx ^ dy and dnL has maximal rank 2dx then the same mapping properties hold for Fourier integral operators in the class ̂ 6/ + ~(T, 7,«")·

[1]  L. Hörmander Fourier integral operators. I , 1995 .

[2]  L. Hörmander,et al.  Oscillatory integrals and multipliers onFLp , 1973 .

[3]  Yibiao Pan A Remark on Convolution With Measures Supported on Curves , 1993, Canadian Mathematical Bulletin.

[4]  A. Seeger,et al.  Local smoothing of Fourier integral operators and Carleson-Sjölin estimates , 1993 .

[5]  Michael Taylor,et al.  Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle , 1985 .

[6]  A. Seeger Degenerate Fourier integral operators in the plane , 1993 .

[7]  D. Oberlin Convolution estimates for some measures on curves , 1987 .

[8]  G. Uhlmann,et al.  Nonlocal inversion formulas for the X-ray transform , 1989 .

[9]  E. Stein,et al.  Radon transforms and torsion , 1991 .

[10]  Gunther Uhlmann,et al.  Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms , 1990 .

[11]  C. Sogge,et al.  Oscillatory integrals associated to folding canonical relations , 1990 .

[12]  Victor Guillemin,et al.  Cosmology in (2+1)- Dimensions, Cyclic Models, and Deformations of M2,1 , 1989 .

[13]  E. Stein,et al.  Oscillatory integrals with polynomial phases , 1992 .

[14]  A. Seeger,et al.  Wave front sets, local smoothing and Bourgain's circular maximal theorem , 1992 .

[15]  E. Stein,et al.  Averages over hypersurfaces smoothness of generalized Radon transforms , 1990 .

[16]  Hart F. Smith,et al.  $L^p$ regularity for the wave equation with strictly convex obstacles , 1994 .

[17]  Gunther Uhlmann,et al.  Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms, II , 1991 .

[18]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[19]  M. Golubitsky,et al.  Stable mappings and their singularities , 1973 .