Global stability and optimisation of a general impulsive biological control model.

An impulsive model of augmentative biological control consisting of a general continuous predator-prey model in ordinary differential equations, i.e. a meta-model, augmented by a discrete part describing periodic introductions of predators is considered. The existence of an invariant periodic solution that corresponds to prey eradication is shown and a condition ensuring its global asymptotic stability is given. An optimisation problem related to the preemptive use of augmentative biological control is then considered. It is assumed that the per time unit budget of biological control (i.e. the number of predators to be released) is fixed and the best deployment of this budget is sought in terms of release frequency. The cost function to be minimised is the time needed to reduce an unforeseen prey (pest) invasion occurring at a worst time instant under some harmless level. The analysis shows that the optimisation problem admits a countable infinite number of solutions. An argumentation considering the required robustness of the optimisation result with respect to the invasive prey population level and to the model parameters is then conducted. It is shown that the cost function is decreasing in the predator release frequency so that the best deployment of the biocontrol agents is to carry out as frequent introductions as possible.

[1]  Daizhan Cheng,et al.  Optimal impulsive control in periodic ecosystem , 2006, Syst. Control. Lett..

[2]  Sunita Gakkhar,et al.  Dynamics in a Beddington–DeAngelis prey–predator system with impulsive harvesting , 2007 .

[3]  K. D. Sunderland,et al.  Modelling the effects of plant species on biocontrol effectiveness in ornamental nursery crops , 2002 .

[4]  Eric T. Funasaki,et al.  Invasion and Chaos in a Periodically Pulsed Mass-Action Chemostat , 1993 .

[5]  Alberto Gandolfi,et al.  A simple model of pathogen-immune dynamics including specific and non-specific immunity. , 2008, Mathematical biosciences.

[6]  J. Eilenberg,et al.  Suggestions for unifying the terminology in biological control , 2001, BioControl.

[7]  Maria Navajas,et al.  Genes in new environments: genetics and evolution in biological control , 2003, Nature Reviews Genetics.

[8]  Fritzi S. Grevstad,et al.  FACTORS INFLUENCING THE CHANCE OF POPULATION ESTABLISHMENT: IMPLICATIONS FOR RELEASE STRATEGIES IN BIOCONTROL , 1999 .

[9]  L. Ehler,et al.  Potential for augmentative biological control of black bean aphid in California sugarbeet , 1997, Entomophaga.

[10]  Eizi Yano,et al.  A simulation study of population interaction between the greenhouse whitefly,Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae), and the parasitoidEncarsia formosa gahan (Hymenoptera: Aphelinidae) I. Description of the model , 1989, Researches on Population Ecology.

[11]  Ray F. Smith,et al.  The integrated control concept , 1959 .

[12]  R. Agarwal,et al.  Recent progress on stage-structured population dynamics , 2002 .

[13]  C. Loehle Control theory and the management of ecosystems , 2006 .

[14]  Sanyi Tang,et al.  Models for integrated pest control and their biological implications. , 2008, Mathematical biosciences.

[15]  Rachel Norman,et al.  Optimal application strategies for entomopathogenic nematodes: integrating theoretical and empirical approaches , 2002 .

[16]  K. Russell,et al.  Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to Control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on Cucumber Plants , 2001 .

[17]  Ray F. Smith,et al.  THE INTEGRATION OF CHEMICAL AND BIOLOGICAL CONTROL OF , 1959 .

[18]  Alberto Gandolfi,et al.  Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). , 2004, Mathematical biosciences.

[19]  Bing Liu,et al.  Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control , 2004 .

[20]  Lansun Chen,et al.  A NEW MATHEMATICAL MODEL FOR OPTIMAL CONTROL STRATEGIES OF INTEGRATED PEST MANAGEMENT , 2007 .

[21]  Ludovic Mailleret,et al.  The Effect of Partial Crop Harvest on Biological Pest Control , 2007 .

[22]  Frédéric Grognard,et al.  Optimal Release Policy for Prophylactic Biological Control , 2006 .

[23]  Xianning Liu,et al.  Complex dynamics of Holling type II Lotka–Volterra predator–prey system with impulsive perturbations on the predator ☆ , 2003 .

[24]  Olivier Bernard,et al.  Global stabilization of a class of partially known nonnegative systems , 2008, Autom..

[25]  A. d’Onofrio A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences , 2005, 1309.3337.

[26]  Eizi Yano,et al.  A simulation study of population interaction between the greenhouse whitefly,Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae) and the parasitoidEncarsia formosa Gahan (Hymenoptera: Aphelinidae) II. Simulation analysis of population dynamics and strategy of biological control , 1989, Researches on Population Ecology.

[27]  Paul Georgescu,et al.  IMPULSIVE CONTROL STRATEGIES FOR PEST MANAGEMENT , 2007 .

[28]  Lansun Chen,et al.  Impulsive vaccination of sir epidemic models with nonlinear incidence rates , 2004 .

[29]  P. Hudson,et al.  Evaluating the Efficacy of Entomopathogenic Nematodes for the Biological Control of Crop Pests: A Nonequilibrium Approach , 2001, The American Naturalist.

[30]  Alberto d'Onofrio,et al.  Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy , 2008, Math. Comput. Model..

[31]  Irene Vänninen,et al.  Life history characteristics of Frankliniella occidentalis on cucumber leaves with and without supplemental food , 2003 .

[32]  Sanyi Tang,et al.  Multiple attractors in stage-structured population models with birth pulses , 2003, Bulletin of mathematical biology.

[33]  F. Grognard,et al.  Two models of interfering predators in impulsive biological control , 2010, Journal of biological dynamics.

[34]  J. Fenlon,et al.  Suppressing Establishment of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) in Cucumber Crops by Prophylactic Release of Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) , 2001 .

[35]  M. Williams,et al.  Biological Control of Thrips on Ornamental Crops: Interactions Between the Predatory Mite Neoseiulus cucumeris (Acari: Phytoseiidae) and Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on Cyclamen , 2001 .

[36]  B. Shulgin,et al.  Pulse vaccination strategy in the SIR epidemic model , 1998, Bulletin of mathematical biology.

[37]  Alberto d'Onofrio,et al.  Stability properties of pulse vaccination strategy in SEIR epidemic model. , 2002, Mathematical biosciences.

[38]  Lansun Chen,et al.  The dynamics of a prey-dependent consumption model concerning impulsive control strategy , 2005, Appl. Math. Comput..

[39]  Sanyi Tang,et al.  Integrated pest management models and their dynamical behaviour , 2005, Bulletin of mathematical biology.

[40]  Sanyi Tang,et al.  Optimal impulsive harvesting on non-autonomous Beverton–Holt difference equations , 2006 .

[41]  Bing Liu,et al.  The dynamical behaviors of a Lotka–Volterra predator–prey model concerning integrated pest management ☆ , 2005 .

[42]  A. d’Onofrio TUMOR-IMMUNE SYSTEM INTERACTION: MODELING THE TUMOR-STIMULATED PROLIFERATION OF EFFECTORS AND IMMUNOTHERAPY , 2006 .

[43]  W. Ebenhöh Coexistence of an unlimited number of algal species in a model system , 1988 .

[44]  Lansun Chen,et al.  Optimal harvesting policies for periodic Gompertz systems , 2007 .

[45]  Peter Chesson,et al.  Biological Control in Theory and Practice , 1985, The American Naturalist.

[46]  Ludovic Mailleret,et al.  A note on semi-discrete modelling in the life sciences , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.