Analysis and Design of VCO-Based Phase-Domain $\Sigma \Delta $ Modulators

VCO-based phase-domain <inline-formula> <tex-math notation="LaTeX">$\Sigma \Delta $ </tex-math></inline-formula> modulators employ the combination of a voltage-controlled-oscillator (VCO) and an up/down counter to replace the analog loop filter used in conventional <inline-formula> <tex-math notation="LaTeX">$\Sigma \Delta $ </tex-math></inline-formula> modulators. Thanks to this highly digital architecture, they can be quite compact, and are expected to shrink even further with CMOS scaling. This paper describes the analysis and design of such converters. Trade-offs between design parameters and the impact of non-idealities, such as finite counter length and VCO non-linearity, are assessed through both theoretical analysis and behavioral simulations. The proposed design methodology is applied to the design of a phase-to-digital converter in a 40-nm CMOS process, which is used to digitize the output of a thermal-diffusivity temperature sensor, achieving ± 0.2° (<inline-formula> <tex-math notation="LaTeX">$3\sigma $ </tex-math></inline-formula>) phase inaccuracy from -40 to 125 °C and a sensor-limited resolution of 57 m° (RMS) within a 500-Hz bandwidth. Measurements on the prototype agree quite well with theoretical predictions, thus demonstrating the validity of the proposed design methodology.

[1]  G. Temes Delta-sigma data converters , 1994 .

[2]  R.B. Staszewski,et al.  All-digital phase-domain TX frequency synthesizer for Bluetooth radios in 0.13/spl mu/m CMOS , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[3]  Kathleen Philips,et al.  A 1.2 nJ/bit 2.4 GHz Receiver With a Sliding-IF Phase-to-Digital Converter for Wireless Personal/Body Area Networks , 2014, IEEE Journal of Solid-State Circuits.

[4]  Kofi A. A. Makinwa,et al.  A 0.008-mm2 area-optimized thermal-diffusivity-based temperature sensor in 160-nm CMOS for SoC thermal monitoring , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[5]  David E. Duarte,et al.  Compact BJT-Based Thermal Sensor for Processor Applications in a 14 nm tri-Gate CMOS Process , 2015, IEEE Journal of Solid-State Circuits.

[6]  Kofi A. A. Makinwa,et al.  11.4 1650µm2 thermal-diffusivity sensors with inaccuracies down to ±0.75°C in 40nm CMOS , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[7]  R. Dutton,et al.  Minimum achievable phase noise of RC oscillators , 2005, IEEE Journal of Solid-State Circuits.

[8]  Robert K. Henderson,et al.  A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology , 2011, 2011 IEEE International Solid-State Circuits Conference.

[9]  Kofi A. A. Makinwa,et al.  A CMOS Temperature-to-Digital Converter with an Inaccuracy of ± 0.5° C (3/spl sigma)from -55 to 125°C , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[10]  Joseph Shor,et al.  Miniaturized BJT-Based Thermal Sensor for Microprocessors in 32- and 22-nm Technologies , 2013, IEEE Journal of Solid-State Circuits.

[11]  Robert M. Gray,et al.  Oversampled Sigma-Delta Modulation , 1987, IEEE Trans. Commun..

[12]  Gabor C. Temes,et al.  A 16-bit low-voltage CMOS A/D converter , 1987 .

[13]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[14]  Ian Galton,et al.  A mostly digital variable-rate continuous-time ADC ΔΣ modulator , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[15]  J. Kostamovaara,et al.  A CMOS time-to-digital converter with better than 10 ps single-shot precision , 2006, IEEE Journal of Solid-State Circuits.

[16]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[17]  Amr Elshazly,et al.  A 16-mW 78-dB SNDR 10-MHz BW CT $\Delta \Sigma$ ADC Using Residue-Cancelling VCO-Based Quantizer , 2012, IEEE Journal of Solid-State Circuits.

[18]  Kofi A. A. Makinwa,et al.  A Thermistor-Based Temperature Sensor for a Real-Time Clock With $\pm$ 2 ppm Frequency Stability , 2015, IEEE Journal of Solid-State Circuits.

[19]  E. Vittoz,et al.  A CMOS Chopper Amplifier , 1986, ESSCIRC '86: Twelfth European Solid-State Circuits Conference.

[20]  Michael H. Perrott,et al.  A 12-Bit, 10-MHz Bandwidth, Continuous-Time ΣΔ ADC With a 5-Bit, 950-MS/s VCO-Based Quantizer , 2008, VLSIC 2008.

[21]  K. A. A. Makinwa,et al.  Linearization of a thermal-diffusivity-based temperature sensor , 2009, 2009 IEEE Sensors.

[22]  Michael H. Perrott,et al.  A 78 dB SNDR 87 mW 20 MHz Bandwidth Continuous-Time � ADC With VCO-Based Integrator and Quantizer Implemented in 0 . 13 � m CMOS , 2009 .

[23]  Sudhakar Pamarti,et al.  Linearization Through Dithering: A 50 MHz Bandwidth, 10-b ENOB, 8.2 mW VCO-Based ADC , 2015, IEEE Journal of Solid-State Circuits.

[24]  M.Z. Straayer,et al.  A 12-Bit, 10-MHz Bandwidth, Continuous-Time $\Sigma\Delta$ ADC With a 5-Bit, 950-MS/s VCO-Based Quantizer , 2008, IEEE Journal of Solid-State Circuits.

[25]  Kofi A. A. Makinwa,et al.  27.8 A 4600μm2 1.5°C (3σ) 0.9kS/s thermal-diffusivity temperature sensor with VCO-based readout , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.