CD28 and ITK signals regulate autoreactive T cell trafficking

[1]  K. Lam,et al.  Molecular Characteristics of CTA056, a Novel Interleukin-2-Inducible T-Cell Kinase Inhibitor that Selectively Targets Malignant T Cells and Modulates Oncomirs , 2012, Molecular Pharmacology.

[2]  R. Locksley,et al.  Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung , 2012, The Journal of experimental medicine.

[3]  M. Sanderson Exploring lung physiology in health and disease with lung slices. , 2011, Pulmonary pharmacology & therapeutics.

[4]  Darrell M. Wilson,et al.  Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial , 2011, The Lancet.

[5]  P. Bousso,et al.  Faculty Opinions recommendation of Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. , 2011 .

[6]  Jonathan H. Esensten,et al.  Intrinsic and extrinsic control of peripheral T‐cell tolerance by costimulatory molecules of the CD28/ B7 family , 2011, Immunological reviews.

[7]  G. Anderson,et al.  Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4 , 2011, Science.

[8]  M. Tokunaga,et al.  Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. , 2010, Immunity.

[9]  S. Turley,et al.  Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions , 2010, The Journal of experimental medicine.

[10]  E. Unanue,et al.  CTLA-4 suppresses the pathogenicity of self antigen–specific T cells by cell-intrinsic and cell-extrinsic mechanisms , 2010, Nature Immunology.

[11]  Joonsoo Kang,et al.  Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity , 2010, Proceedings of the National Academy of Sciences.

[12]  H. Ochs,et al.  IL-10 Deficiency Unleashes an Influenza-Specific Th17 Response and Enhances Survival against High-Dose Challenge1 , 2009, The Journal of Immunology.

[13]  J. Woska,et al.  5-Aminomethylbenzimidazoles as potent ITK antagonists. , 2009, Bioorganic & medicinal chemistry letters.

[14]  R. Friedline,et al.  CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance , 2009, The Journal of experimental medicine.

[15]  B. Engelhardt,et al.  β1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity , 2009, Proceedings of the National Academy of Sciences.

[16]  M. Peakman,et al.  Expression of CD86 on Human Islet Endothelial Cells Facilitates T Cell Adhesion and Migration1 , 2008, The Journal of Immunology.

[17]  T. Nomura,et al.  CTLA-4 Control over Foxp3+ Regulatory T Cell Function , 2008, Science.

[18]  P. Schwartzberg,et al.  Selective targeting of ITK blocks multiple steps of HIV replication , 2008, Proceedings of the National Academy of Sciences.

[19]  J. Burkhardt,et al.  The actin cytoskeleton in T cell activation. , 2008, Annual review of immunology.

[20]  Ian Parker,et al.  Choreography of Cell Motility and Interaction Dynamics Imaged by Two-photon Microscopy in Lymphoid Organs , 2007 .

[21]  M. McCausland,et al.  Quantitative PCR technique for detecting lymphocytic choriomeningitis virus in vivo. , 2008, Journal of virological methods.

[22]  F. Ginhoux,et al.  The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics , 2008, Nature Immunology.

[23]  U. Grohmann,et al.  IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation , 2007, Nature Reviews Immunology.

[24]  K. Okkenhaug,et al.  A two-signal model for T cell trafficking. , 2007, Trends in immunology.

[25]  K. Okkenhaug,et al.  Physiologic and aberrant regulation of memory T-cell trafficking by the costimulatory molecule CD28. , 2007, Blood.

[26]  D. Altschuh,et al.  Cutting Edge: Monovalency of CD28 Maintains the Antigen Dependence of T Cell Costimulatory Responses1 , 2006, The Journal of Immunology.

[27]  S. Gough,et al.  CTLA4 gene polymorphism and autoimmunity , 2005, Immunological reviews.

[28]  N. Caplen,et al.  Kinase-Independent Functions for Itk in TCR-Induced Regulation of Vav and the Actin Cytoskeleton1 , 2005, The Journal of Immunology.

[29]  G. Freeman,et al.  The B7 family revisited. , 2005, Annual review of immunology.

[30]  R. Ransohoff,et al.  Chemokine receptor CXCR3: an unexpected enigma. , 2005, Current topics in developmental biology.

[31]  P. Schwartzberg,et al.  Tec family kinases in T lymphocyte development and function. , 2005, Annual review of immunology.

[32]  A. Doweyko,et al.  Selective Itk inhibitors block T-cell activation and murine lung inflammation. , 2004, Biochemistry.

[33]  M. Mandai,et al.  Requirement for Tec Kinases in Chemokine-Induced Migration and Activation of Cdc42 and Rac , 2004, Current Biology.

[34]  V. Barr,et al.  CD28 Engagement Promotes Actin Polymerization Through the Activation of the Small Rho GTPase Cdc42 in Human T Cells , 2003, The Journal of Immunology.

[35]  D. Kreisel,et al.  Mouse Vascular Endothelium Activates CD8+ T Lymphocytes in a B7-Dependent Fashion1 , 2002, The Journal of Immunology.

[36]  Andrea Iaboni,et al.  The interaction properties of costimulatory molecules revisited. , 2002, Immunity.

[37]  C. Thompson,et al.  The CD28 signaling pathway regulates glucose metabolism. , 2002, Immunity.

[38]  O. Acuto,et al.  CD28 as a molecular amplifier extending TCR ligation and signaling capabilities. , 2001, Immunity.

[39]  R. Mitchell,et al.  B7-dependent T-cell costimulation in mice lacking CD28 and CTLA4. , 2001, The Journal of clinical investigation.

[40]  J. Egen,et al.  CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. , 2001, Annual review of immunology.

[41]  K. Okkenhaug,et al.  A point mutation in CD28 distinguishes proliferative signals from survival signals , 2001, Nature Immunology.

[42]  Y. Qiu,et al.  A novel function for the Tec family tyrosine kinase Itk in activation of β1 integrins by the T‐cell receptor , 2001, The EMBO journal.

[43]  D. Olive,et al.  CD28 Utilizes Vav-1 to Enhance TCR-Proximal Signaling and NF-AT Activation1 , 2000, The Journal of Immunology.

[44]  C. Thompson,et al.  Structural Analysis of CTLA-4 Function In Vivo1 , 2000, The Journal of Immunology.

[45]  J. Bluestone,et al.  B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. , 2000, Immunity.

[46]  J. Bluestone,et al.  A Critical Role for B7/CD28 Costimulation in Experimental Autoimmune Encephalomyelitis: A Comparative Study Using Costimulatory Molecule-Deficient Mice and Monoclonal Antibody Blockade1 , 2000, The Journal of Immunology.

[47]  R. Coffman,et al.  Impaired NFATc translocation and failure of Th2 development in Itk-deficient CD4+ T cells. , 1999, Immunity.

[48]  V. Kuchroo,et al.  Studies in B7-Deficient Mice Reveal a Critical Role for B7 Costimulation in Both Induction and Effector Phases of Experimental Autoimmune Encephalomyelitis , 1999, The Journal of experimental medicine.

[49]  A. Lichtman,et al.  Endothelial antigen presentation: stimulation of previously activated but not naïve TCR-transgenic mouse T cells. , 1998, Cellular immunology.

[50]  T. Mak,et al.  Normal responsiveness of CTLA-4-deficient anti-viral cytotoxic T cells. , 1998, Journal of immunology.

[51]  T. Sullivan,et al.  Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. , 1997, Immunity.

[52]  M. Bachmann,et al.  Antiviral immune responses in Itk-deficient mice , 1997, Journal of virology.

[53]  J. Goverman,et al.  Initiation and regulation of CNS autoimmunity. , 1997, Critical reviews in immunology.

[54]  S. Kondo,et al.  Contribution of the CD28 molecule to allergic and irritant-induced skin reactions in CD28 -/- mice. , 1996, Journal of immunology.

[55]  E. Fuchs,et al.  CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. , 1996, Immunity.

[56]  J. Peterson,et al.  Transfer of Diabetes in the NOD-scid Mouse by CD4 T-Cell Clones: Differential Requirement for CD8 T-Cells , 1996, Diabetes.

[57]  C. Thompson,et al.  CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. , 1995, Immunity.

[58]  J. Bluestone,et al.  Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse , 1995, The Journal of experimental medicine.

[59]  K P Lee,et al.  Differential T cell costimulatory requirements in CD28-deficient mice. , 1993, Science.

[60]  J. Allison,et al.  CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones , 1992, Nature.

[61]  K. Horgan,et al.  Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion , 1992, The Journal of experimental medicine.

[62]  G. A. Moore,et al.  randomised double blind placebo controlled trial , 2022 .