Distributions of epistasis in microbes fit predictions from a fitness landscape model

[1]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[2]  E. Szathmáry,et al.  Do deleterious mutations act synergistically? Metabolic control theory provides a partial answer. , 1993, Genetics.

[3]  H. A. Orr,et al.  The genetic theory of adaptation: a brief history , 2005, Nature Reviews Genetics.

[4]  LANDEl,et al.  THE GENETIC COVARIANCE BETWEEN CHARACTERS MAINTAINED BY PLEIOTROPIC MUTATIONS , 2003 .

[5]  H. A. Orr,et al.  The “sizes” of mutations fixed in phenotypic evolution: a response to Clarke and Arthur , 2001, Evolution & development.

[6]  M. Wade,et al.  Epistasis and the Evolutionary Process , 2000 .

[7]  J. Welch,et al.  Fisher’s Microscope and Haldane’s Ellipse , 2005, The American Naturalist.

[8]  Rafael Sanjuán,et al.  The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  C. Burch,et al.  Patterns of epistasis in RNA viruses: a review of the evidence from vaccine design , 2003, Journal of evolutionary biology.

[10]  H. Akaike A new look at the statistical model identification , 1974 .

[11]  S. Otto,et al.  Evolution of sex: Resolving the paradox of sex and recombination , 2002, Nature Reviews Genetics.

[12]  R. Korona,et al.  Epistatic interactions of spontaneous mutations in haploid strains of the yeast Saccharomyces cerevisiae , 2001 .

[13]  M. G. Kidwell,et al.  Transposable elements as sources of variation in animals and plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  L. Hurst Epistasis and the Evolutionary Process , 2000, Heredity.

[15]  Rafael Sanjuán,et al.  The contribution of epistasis to the architecture of fitness in an RNA virus. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Richard E. Lenski,et al.  Distribution of fitness effects caused by random insertion mutations in Escherichia coli , 2004, Genetica.

[17]  C. Petropoulos,et al.  Evidence for Positive Epistasis in HIV-1 , 2004, Science.

[18]  M. Moran,et al.  A brief history. , 2004, Journal of the Medical Association of Georgia.

[19]  R. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[20]  R. Buerger The Mathematical Theory of Selection, Recombination, and Mutation , 2000 .

[21]  T. Lenormand,et al.  THE FITNESS EFFECT OF MUTATIONS ACROSS ENVIRONMENTS: A SURVEY IN LIGHT OF FITNESS LANDSCAPE MODELS , 2006, Evolution; international journal of organic evolution.

[22]  R. Lenski,et al.  Test of synergistic interactions among deleterious mutations in bacteria , 1997, Nature.

[23]  R. Mauricio,et al.  QTL-based evidence for the role of epistasis in evolution. , 2005, Genetical research.

[24]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[25]  S. Bonhoeffer,et al.  Effect of Varying Epistasis on the Evolution of Recombination , 2006, Genetics.

[26]  M. Whitlock,et al.  FACTORS AFFECTING THE GENETIC LOAD IN DROSOPHILA: SYNERGISTIC EPISTASIS AND CORRELATIONS AMONG FITNESS COMPONENTS , 2000, Evolution; international journal of organic evolution.

[27]  M W Feldman,et al.  Deleterious mutations, variable epistatic interactions, and the evolution of recombination. , 1997, Theoretical population biology.

[28]  A. M. Mathai Quadratic forms in random variables , 1992 .

[29]  R. Lenski,et al.  Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  D. Roze,et al.  Epistasis in RNA Viruses , 2004, Science.

[31]  Stephen S Fong,et al.  Metabolic gene–deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes , 2004, Nature Genetics.