D3.3: Simulated users for training NLG (TownInfo/Self-Help)

[1]  Ian H. Witten,et al.  The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression , 1991, IEEE Trans. Inf. Theory.

[2]  Hua Ai,et al.  Knowledge consistent user simulations for dialog systems , 2007, INTERSPEECH.

[3]  Ronald Rosenfeld,et al.  Statistical language modeling using the CMU-cambridge toolkit , 1997, EUROSPEECH.

[4]  Kallirroi Georgila,et al.  Quantitative Evaluation of User Simulation Techniques for Spoken Dialogue Systems , 2005, SIGDIAL.

[5]  Oliver Lemon,et al.  A Two-Tier User Simulation Model for Reinforcement Learning of Adaptive Referring Expression Generation Policies , 2009, SIGDIAL Conference.

[6]  Steve J. Young,et al.  A survey of statistical user simulation techniques for reinforcement-learning of dialogue management strategies , 2006, The Knowledge Engineering Review.

[7]  Jason D. Williams,et al.  A method for evaluating and comparing user simulations: The Cramér-von Mises divergence , 2007, 2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU).

[8]  H. H. Clark,et al.  References in Conversation Between Experts and Novices , 1987 .

[9]  Hermann Ney,et al.  On structuring probabilistic dependences in stochastic language modelling , 1994, Comput. Speech Lang..

[10]  Diane J. Litman,et al.  Comparing real-real, simulated-simulated, and simulated-real spoken dialogue corpora , 2006 .

[11]  Oliver Lemon,et al.  D6.1.1: Domain-limited TTS corpus for expressive speech synthesis and Wizard-of-Oz Data for NLG Strategies , 2009 .

[12]  Kallirroi Georgila,et al.  User simulation for spoken dialogue systems: learning and evaluation , 2006, INTERSPEECH.

[13]  Oliver Lemon,et al.  Natural Language Generation as Planning Under Uncertainty for Spoken Dialogue Systems , 2009, EACL.

[14]  Hua Ai,et al.  Comparing User Simulation Models For Dialog Strategy Learning , 2007, HLT-NAACL.

[15]  Oliver Lemon,et al.  A Wizard-of-Oz interface to study information presentation strategies for spoken dialogue systems , 2009 .

[16]  Oliver Lemon,et al.  Learning Lexical Alignment Policies for Generating Referring Expressions for Spoken Dialogue Systems , 2009, ENLG.

[17]  Roberto Pieraccini,et al.  User modeling for spoken dialogue system evaluation , 1997, 1997 IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings.

[18]  Oliver Lemon,et al.  A Wizard-of-Oz Environment to Study Referring Expression Generation in a Situated Spoken Dialogue Task , 2009, ENLG.

[19]  Oliver Lemon,et al.  Cluster-based user simulations for learning dialogue strategies , 2006, INTERSPEECH.

[20]  Oliver Lemon,et al.  Hierarchical Reinforcement Learning of Dialogue Policies in a development environment for dialogue systems: REALL-DUDE , 2006 .

[21]  Gary Geunbae Lee,et al.  Data-driven user simulation for automated evaluation of spoken dialog systems , 2009, Comput. Speech Lang..

[22]  Steve Young,et al.  Statistical User Simulation with a Hidden Agenda , 2007, SIGDIAL.

[23]  Slava M. Katz,et al.  Estimation of probabilities from sparse data for the language model component of a speech recognizer , 1987, IEEE Trans. Acoust. Speech Signal Process..

[24]  H. Cuayahuitl,et al.  Human-computer dialogue simulation using hidden Markov models , 2005, IEEE Workshop on Automatic Speech Recognition and Understanding, 2005..