Linear-time algorithm for generating c-isolated bicliques

ABSTRACT Bicliques are widely used to solve various real-world problems encountered in bio-informatics, data mining and networks. We consider c-isolated bicliques, a variation of bicliques. The c-isolated bicliques can model communities in social and biological networks. We propose an efficient algorithm to generate all c-isolated maximal bicliques in a given bipartite graph. Our algorithm exploits underlying properties of an isolated biclique to trim the input graph. Furthermore, the algorithm deploys the vertex cover enumeration algorithm based on fixed parameter tractability and lists all maximal c-isolated bicliques in linear time (in terms of graph size), for constant c.

[1]  Joe Sawada,et al.  Generating bracelets with fixed content , 2013, Theor. Comput. Sci..

[2]  Jinyan Li,et al.  Maximal Biclique Subgraphs and Closed Pattern Pairs of the Adjacency Matrix: A One-to-One Correspondence and Mining Algorithms , 2007, IEEE Transactions on Knowledge and Data Engineering.

[3]  Rolf Niedermeier,et al.  An Efficient Exact Algorithm for Constraint Bipartite Vertex Cover , 1999, J. Algorithms.

[4]  Tsuyoshi Murata,et al.  Discovery of User Communities Based on Terms of Web Log Data , 2007, New Generation Computing.

[5]  Jinyan Li,et al.  Maximal Quasi-Bicliques with Balanced Noise Tolerance: Concepts and Co-clustering Applications , 2008, SDM.

[6]  Kazuo Iwama,et al.  Linear-Time Enumeration of Isolated Cliques , 2005, ESA.

[7]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[8]  Etsuji Tomita,et al.  Clique-based data mining for related genes in a biomedical database , 2009, BMC Bioinformatics.

[9]  Syed Husnine,et al.  On Fast Enumeration of Pseudo Bicliques , 2010, IWOCA.

[10]  Henning Fernau,et al.  2 Contents , 1996 .

[11]  Miyagawa Hiromitsu,et al.  Linear Time Enumeration of Isolated Bicliques with Part Size Proportion Bounded by Constants , 2007 .

[12]  Dieter Kratsch,et al.  On Independent Sets and Bicliques in Graphs , 2008, Algorithmica.

[13]  Henning Fernau,et al.  Constraint bipartite vertex cover: simpler exact algorithms and implementations , 2012, J. Comb. Optim..

[14]  Todd Wareham,et al.  The Parameterized Complexity of Enumerating Frequent Itemsets , 2006, IWPEC.

[15]  Christian Komusiewicz,et al.  Isolation concepts for efficiently enumerating dense subgraphs , 2009, Theor. Comput. Sci..

[16]  Henning Fernau,et al.  On Parameterized Enumeration , 2002, COCOON.

[17]  Celina M. H. de Figueiredo,et al.  On the generation of bicliques of a graph , 2007, Discret. Appl. Math..

[18]  Pierre Brézellec,et al.  Cluster-C, an algorithm for the large-scale clustering of protein sequences based on the extraction of maximal cliques , 2004, Comput. Biol. Chem..

[19]  Kazuo Iwama,et al.  Enumeration of isolated cliques and pseudo-cliques , 2009, TALG.

[20]  Christian Komusiewicz,et al.  Isolation concepts for clique enumeration: Comparison and computational experiments , 2009, Theor. Comput. Sci..

[21]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[22]  Marcin Krzywkowski,et al.  Trees having many minimal dominating sets , 2013, Inf. Process. Lett..

[23]  Pim van 't Hof,et al.  Minimal dominating sets in graph classes: Combinatorial bounds and enumeration , 2012, Theor. Comput. Sci..