Refinable Kernels

Motivated by mathematical learning from training data, we introduce the notion of refinable kernels. Various characterizations of refinable kernels are presented. The concept of refinable kernels leads to the introduction of wavelet-like reproducing kernels. We also investigate a refinable kernel that forms a Riesz basis. In particular, we characterize refinable translation invariant kernels, and refinable kernels defined by refinable functions. This study leads to multiresolution analysis of reproducing kernel Hilbert spaces.

[1]  A. Beurling On two problems concerning linear transformations in hilbert space , 1949 .

[2]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[3]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[4]  S. Bochner,et al.  Lectures on Fourier integrals : with an author's supplement on monotonic functions, Stieltjes integrals, and harmonic analysis , 1959 .

[5]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[6]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[7]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[8]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[9]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[10]  Y. Meyer Wavelets and Operators , 1993 .

[11]  C. Micchelli,et al.  Functions that preserve families of positive semidefinite matrices , 1995 .

[12]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[13]  S. Mallat A wavelet tour of signal processing , 1998 .

[14]  G. Wahba Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV , 1999 .

[15]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[16]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[17]  Junbin Gao,et al.  On a Class of Support Vector Kernels Based on Frames in Function Hilbert Spaces , 2001, Neural Computation.

[18]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[19]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[20]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[21]  L. Grafakos Classical and modern Fourier analysis , 2003 .

[22]  S. Smale,et al.  ESTIMATING THE APPROXIMATION ERROR IN LEARNING THEORY , 2003 .

[23]  Tong Zhang Statistical behavior and consistency of classification methods based on convex risk minimization , 2003 .

[24]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[25]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[26]  Charles A. Micchelli,et al.  A Function Representation for Learning in Banach Spaces , 2004, COLT.

[27]  S. Smale,et al.  Shannon sampling and function reconstruction from point values , 2004 .

[28]  Charles A. Micchelli,et al.  Learning the Kernel Function via Regularization , 2005, J. Mach. Learn. Res..

[29]  Stéphane Canu,et al.  Frames, Reproducing Kernels, Regularization and Learning , 2005, J. Mach. Learn. Res..

[30]  Charles A. Micchelli,et al.  On Learning Vector-Valued Functions , 2005, Neural Computation.

[31]  Chen Zhongying MULTILEVEL AUGMENTATION METHODS FOR SOLVING OPERATOR EQUATIONS , 2005 .

[32]  S. Canu,et al.  Non‐parametric regression with wavelet kernels , 2005 .

[33]  Bernhard Schölkopf,et al.  Implicit Surface Modelling with a Globally Regularised Basis of Compact Support , 2006, Comput. Graph. Forum.

[34]  Yuesheng Xu,et al.  Universal Kernels , 2006, J. Mach. Learn. Res..

[35]  R. Opfer Tight frame expansions of multiscale reproducing kernels in Sobolev spaces , 2006 .

[36]  Anestis Antoniadis,et al.  Wavelet kernel penalized estimation for non-equispaced design regression , 2006, Stat. Comput..

[37]  Yuesheng Xu,et al.  A multilevel augmentation method for solving ill-posed operator equations , 2006 .

[38]  Roland Opfer,et al.  Multiscale kernels , 2006, Adv. Comput. Math..

[39]  Yuesheng Xu,et al.  Multilevel augmentation methods for differential equations , 2006, Adv. Comput. Math..

[40]  Yiming Ying,et al.  Learnability of Gaussians with Flexible Variances , 2007, J. Mach. Learn. Res..

[41]  Ingo Steinwart,et al.  Fast rates for support vector machines using Gaussian kernels , 2007, 0708.1838.

[42]  Yuesheng Xu,et al.  On the matrix completion problem for multivariate filter bank construction , 2007, Adv. Comput. Math..

[43]  S. Smale,et al.  Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .

[44]  B. Yu,et al.  The Bedrosian identity and homogeneous semi-convolution equations , 2008 .

[45]  Bernhard Schölkopf,et al.  Sparse multiscale gaussian process regression , 2008, ICML '08.

[46]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .