Enhancement of nonlinear effects using photonic crystals

The quest for all-optical signal processing is generally deemed to be impractical because optical nonlinearities are usually weak. The emerging field of nonlinear photonic crystals seems destined to change this view dramatically. Theoretical considerations show that all-optical devices using photonic crystal designs promise to be smaller than the wavelength of light, and to operate with bandwidths that are very difficult to achieve electronically. When created in commonly used materials, these devices could operate at powers of only a few milliwatts. Moreover, if these designs are combined with materials and systems that support electromagnetically induced transparency, operation at single-photon power levels could be feasible.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  B. Temelkuran,et al.  Tight-binding description of the coupled defect modes in three-dimensional photonic crystals , 2000, Physical review letters.

[3]  Shanhui Fan,et al.  Channel Drop Tunneling through Localized States , 1998 .

[4]  George I. Stegeman,et al.  Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs , 1993 .

[5]  Steven G. Johnson,et al.  Photonic Crystals: The Road from Theory to Practice , 2001 .

[6]  A. Yariv Critical coupling and its control in optical waveguide-ring resonator systems , 2002, IEEE Photonics Technology Letters.

[7]  A. Fiore,et al.  Phase matching using an isotropic nonlinear optical material , 1998, Nature.

[8]  W. S. Hobson,et al.  Nonlinear spectroscopy near half‐gap in bulk and quantum well GaAs/AlGaAs waveguides , 1992 .

[9]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[10]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[11]  J E Heebner,et al.  Enhanced all-optical switching by use of a nonlinear fiber ring resonator. , 1999, Optics letters.

[12]  M. Scully,et al.  Intracavity electromagnetically induced transparency. , 1998, Optics letters.

[13]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[14]  J. S. Aitchison,et al.  Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .

[15]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[16]  J. Sipe,et al.  Optical pulse propagation in nonlinear photonic crystals. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  S Fan,et al.  Elimination of cross talk in waveguide intersections. , 1998, Optics letters.

[18]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[19]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[20]  Shanhui Fan,et al.  THEORETICAL ANALYSIS OF CHANNEL DROP TUNNELING PROCESSES , 1999 .

[21]  P. St. J. Russell,et al.  Bloch Wave Analysis of Dispersion and Pulse Propagation in Pure Distributed Feedback Structures , 1991 .

[22]  Sipe,et al.  Extensions and generalizations of an envelope-function approach for the electrodynamics of nonlinear periodic structures. , 1989, Physical review. A, General physics.

[23]  Elsa Garmire,et al.  Theory of bistability in nonlinear distributed feedback structures (A) , 1979 .

[24]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[25]  Shanhui Fan,et al.  All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. , 2003, Optics letters.

[26]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[27]  Chen,et al.  Gap solitons and the nonlinear optical response of superlattices. , 1987, Physical review letters.

[28]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[29]  Jeff F. Young,et al.  Optical bistability involving photonic crystal microcavities and Fano line shapes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Jelena Vucković,et al.  Design of photonic crystal microcavities for cavity QED. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  S. Harris,et al.  Electromagnetically Induced Transparency , 1991, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[32]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[33]  Michael Scalora,et al.  The photonic band edge optical diode , 1994 .

[34]  M S Shahriar,et al.  Observation of ultraslow and stored light pulses in a solid. , 2001, Physical review letters.

[35]  Yoshimasa Sugimoto,et al.  Observation of small group velocity in two-dimensional AlGaAs-based photonic crystal slabs , 2002 .

[36]  Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures , 1999 .

[37]  Ross,et al.  Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal , 2000, Physical review letters.

[38]  Joseph,et al.  Slow Bragg solitons in nonlinear periodic structures. , 1989, Physical review letters.

[39]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[40]  Shanhui Fan,et al.  Nonlinear photonic crystal microdevices for optical integration. , 2003, Optics letters.

[41]  Martin M. Fejer,et al.  All-optical diode in a periodically poled lithium niobate waveguide , 2001 .

[42]  Yuri S. Kivshar,et al.  Nonlinear transmission and light localization in photonic-crystal waveguides , 2002 .

[43]  Steven G. Johnson,et al.  Waveguide branches in photonic crystals , 2001 .

[44]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[45]  Steven G. Johnson,et al.  Linear waveguides in photonic-crystal slabs , 2000 .

[46]  R. Kashyap,et al.  Fiber Bragg grating for optical dark soliton generation , 1997, IEEE Photonics Technology Letters.

[47]  Demetrios N. Christodoulides,et al.  Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.

[48]  Amnon Yariv,et al.  Second-harmonic generation with pulses in a coupled-resonator optical waveguide. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Steven G. Johnson,et al.  Photonic-crystal slow-light enhancement of nonlinear phase sensitivity , 2002 .

[50]  Axel Scherer,et al.  High Quality Two-Dimensional Photonic Crystal Slab Cavities , 2001 .

[51]  A. Mecozzi,et al.  Spatial instabilities, all-optical limiting, and thresholding in nonlinear distributed-feedback devices. , 1987, Optics letters.

[52]  Steven G. Johnson,et al.  Quantitative Analysis of Bending Efficiency in Photonic-Crystal Waveguide Bends at x=1.55{micro}m Wavelengths , 2001 .

[53]  Didier Felbacq,et al.  Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity , 2000 .

[54]  H. Gibbs Optical Bistability Controlling Light With Light , 1985 .

[55]  Boris A. Malomed,et al.  Solitary waves in Bragg gratings with a quadratic nonlinearity , 1997 .

[56]  Richard E. Slusher,et al.  Nonlinear Photonic Crystals , 2003 .

[57]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[58]  Charles M. Bowden,et al.  Nonlinear Optics of Photonic Crystals , 2002 .

[59]  L. Torner,et al.  Spatial switching of quadratic solitons in engineered quasi-phase-matched structures. , 1999, Optics letters.

[60]  Qiming Li,et al.  Optical nonlinear response of a single nonlinear dielectric layer sandwiched between two linear dielectric structures , 1997 .

[61]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .