GPS Carrier Tracking Loop Performance in the presence of Ionospheric Scintillations

The performance of several GPS carrier tracking loops is evaluated using wideband GPS data recorded during strong ionospheric scintillations. The aim of this study is to determine the loop structures and parameters that enable good phase tracking during the power fades and phase dynamics induced by scintillations. Constant-bandwidth and variable-bandwidth loops are studied using theoretical models, simulation, and tests with actual GPS signals. Constant-bandwidth loops with loop bandwidths near 15 Hz are shown to lose phase lock during scintillations. Use of the decision-directed discriminator reduces the carrier lock threshold by »1 dB relative to the arctangent and conventional Costas discriminators. A proposed variablebandwidth loop based on a Kalman filter reduces the carrier lock threshold by more than 7 dB compared to a 15-Hz constant-bandwidth loop. The Kalman filter-based strategy employs a soft-decision discriminator, explicitly models the eects of receiver clock noise, and optimally adapts the loop bandwidth to the carrier-to-noise ratio. In extensive simulation and in tests using actual wideband GPS data, the Kalman filter PLL demonstrates improved cycle slip immunity relative to constant bandwidth PLLs.

[1]  Bradford W. Parkinson,et al.  Global Positioning System , 1995 .

[2]  Michael P. Fitz,et al.  A performance analysis of a digital PLL based MPSK demodulator , 1995, IEEE Trans. Commun..

[3]  Joseph I. Statman,et al.  An estimator-predictor approach to PLL loop filter design , 1990, IEEE Trans. Commun..

[4]  Marvin K. Simon,et al.  Optimum Performance of Suppressed Carrier Receivers with Costas Loop Tracking , 1977, IEEE Trans. Commun..

[5]  Taehwan Kim,et al.  GPS Receiver Performance Characterization Under Simulated Ionospheric Scintillation Environments II , 2002 .

[6]  J. Aarons,et al.  Global morphology of ionospheric scintillations , 1971, Proceedings of the IEEE.

[7]  Mark L. Psiaki,et al.  Extended Kalman Filter Methods for Tracking Weak GPS Signals , 2002 .

[8]  Paul M. Kintner,et al.  Simultaneous Global Positioning System observations of equatorial scintillations and total electron content fluctuations , 1999 .

[9]  A. J. Van Dierendonck,et al.  Ionospheric Scintillation Monitoring Using Commercial Single Frequency C/A Code Receivers , 1993 .

[10]  Marvin K. Simon On the Optimality of the MAP Estimation Loop for Carrier Phase Tracking BPSK and QPSK Signals , 1979, IEEE Trans. Commun..

[11]  Andrew J. Viterbi,et al.  Principles of coherent communication , 1966 .

[12]  A. J. Van Dierendonck,et al.  Measuring Ionospheric Scintillation Effects from GPS Signals , 2001 .

[13]  J. Salz,et al.  Synchronization Systems in Communication and Control , 1973, IEEE Transactions on Communications.

[14]  A. J. Van Dierendonck,et al.  GPS receiver performance characterization under realistic ionospheric phase scintillation environments , 2004 .

[15]  Todd E. Humphreys,et al.  Analysis of Ionospheric Scintillations using Wideband GPS L1 C/A Signal Data , 2004 .

[16]  Beach Theodore,et al.  GLOBAL POSITIONING SYSTEM STUDIES OF EQUATORIAL SCINTILLATIONS , 1998 .

[17]  W.C. Lindsey,et al.  A survey of digital phase-locked loops , 1981, Proceedings of the IEEE.

[18]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[19]  J. Aarons,et al.  Global positioning system phase fluctuations at auroral latitudes , 1997 .

[20]  John A. Klobuchar,et al.  Ionospheric Scintillation Effects in the Equatorial and Auroral Regions , 2000 .

[21]  S.C. Gupta,et al.  Phase-locked loops , 1975, Proceedings of the IEEE.