Reproducibility in G0W0 calculations for solids

[1]  S. Louie,et al.  Static subspace approximation for the evaluation of G0W0 quasiparticle energies within a sum-over-bands approach , 2019, Physical Review B.

[2]  Steven G. Louie,et al.  Large-scale GW calculations on pre-exascale HPC systems , 2018, Comput. Phys. Commun..

[3]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[4]  G. Kresse,et al.  GW100: A Plane Wave Perspective for Small Molecules. , 2016, Journal of chemical theory and computation.

[5]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[6]  Ming Zhang,et al.  All-electron mixed basis GW calculations of TiO2 and ZnO crystals , 2016 .

[7]  B. Monserrat Correlation effects on electron-phonon coupling in semiconductors: Many-body theory along thermal lines , 2016, 1603.00551.

[8]  Chao Yang,et al.  GW100: Benchmarking G0W0 for Molecular Systems. , 2015, Journal of chemical theory and computation.

[9]  Ming Zhang,et al.  All-electron G W calculation of rutile TiO 2 with and without Nb impurities , 2015 .

[10]  Steven G. Louie,et al.  Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals , 2015, Nature Communications.

[11]  Cheol-Hwan Park,et al.  Insights and challenges of applying the GW method to transition metal oxides , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  S. Poncé,et al.  Many-Body Effects on the Zero-Point Renormalization of the Band Structure , 2014 .

[13]  Jivr'i Klimevs,et al.  Predictive GW calculations using plane waves and pseudopotentials , 2014, 1404.3101.

[14]  Fang Liu,et al.  Numerical integration for ab initio many-electron self energy calculations within the GW approximation , 2014, J. Comput. Phys..

[15]  S. Louie,et al.  First-principles DFT plus GW study of oxygen vacancies in rutile TiO2 , 2014, 1407.5706.

[16]  P. Larson,et al.  Role of the plasmon-pole model in the GW approximation , 2013 .

[17]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[18]  M. Marques,et al.  Strong renormalization of the electronic band gap due to lattice polarization in the GW formalism. , 2013, Physical review letters.

[19]  Michiel J. van Setten,et al.  The GW-Method for Quantum Chemistry Applications: Theory and Implementation. , 2013, Journal of chemical theory and computation.

[20]  A. Zunger,et al.  Angle-resolved photoemission and quasiparticle calculation of ZnO: The need for d band shift in oxide semiconductors , 2012 .

[21]  G. Rignanese,et al.  Effects of plasmon pole models on the G0W0 electronic structure of various oxides , 2012 .

[22]  S. Louie,et al.  Coulomb-hole summations and energies for GW calculations with limited number of empty orbitals: a modified static remainder approach , 2012, 1208.0266.

[23]  F. Giustino,et al.  GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  G. Rignanese,et al.  Band structure of gold from many-body perturbation theory , 2012, 1203.4508.

[25]  L. Reining,et al.  Efficient GW calculations for SnO 2 , ZnO, and rubrene: The effective-energy technique , 2012 .

[26]  A. Tkatchenko,et al.  Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions , 2012, 1201.0655.

[27]  K. Sankaran,et al.  G 0 W 0 band gap of ZnO: Effects of plasmon-pole models , 2011 .

[28]  David A. Strubbe,et al.  BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures , 2011, Comput. Phys. Commun..

[29]  C. Friedrich,et al.  Erratum: Band convergence and linearization error correction of all-electron GW calculations: The extreme case of zinc oxide [Phys. Rev. B10.1103/PhysRevB.83.081101 83, 081101(R) (2011)] , 2011 .

[30]  S. Blugel,et al.  Band convergence and linearization error correction of all-electron GW calculations: The extreme case of zinc oxide , 2011, 1102.3255.

[31]  G. Rignanese,et al.  Electronic properties of interfaces and defects from many‐body perturbation theory: Recent developments and applications , 2011 .

[32]  S. Louie,et al.  Quasiparticle band gap of ZnO: high accuracy from the conventional G⁰W⁰ approach. , 2010, Physical review letters.

[33]  M. Hybertsen,et al.  Quasiparticle and optical properties of rutile and anatase TiO 2 , 2010, 1006.4085.

[34]  Á. Rubio,et al.  Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases , 2010, 1003.6010.

[35]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[36]  M. Scheffler,et al.  Influence of the core-valence interaction and of the pseudopotential approximation on the electron self-energy in semiconductors. , 2008, Physical review letters.

[37]  A. Alavi,et al.  Efficient calculation of the exact exchange energy in periodic systems using a truncated Coulomb potential , 2008 .

[38]  G. Rignanese,et al.  Band offsets at the Si/SiO2 interface from many-body perturbation theory. , 2008, Physical review letters.

[39]  M. Cardona,et al.  Effect of temperature on isotopic mass dependence of excitonic band gaps in semiconductors: ZnO , 2007 .

[40]  M. Cardona,et al.  Isotopic-mass dependence of the A, B, and C excitonic band gaps in ZnO at low temperatures , 2006 .

[41]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[42]  P. Carrier,et al.  General treatment of the singularities in Hartree-Fock and exact-exchange Kohn-Sham methods for solids , 2006, cond-mat/0603632.

[43]  S. Ismail-Beigi,et al.  Truncation of periodic image interactions for confined systems , 2006, cond-mat/0603448.

[44]  E. Gross,et al.  Exact coulomb cutoff technique for supercell calculations , 2006, cond-mat/0601031.

[45]  M. Thewalt,et al.  Isotope effects on the optical spectra of semiconductors , 2005 .

[46]  M. Oshikiri,et al.  The electronic structures of the thin films of InVO4 and TiO2 by first principles calculations , 2003 .

[47]  L. Reining,et al.  Parameter-free calculation of response functions in time-dependent density-functional theory. , 2003, Physical review letters.

[48]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[49]  M. Usuda,et al.  All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO , 2002, cond-mat/0202308.

[50]  V. Anisimov Strong Coulomb Correlations in Electronic Structure Calculations , 2000 .

[51]  L. Reining,et al.  Ab Initio Calculation of Self-Energy Effects on Optical Properties of GaAs(110) , 1998 .

[52]  M. Scheffler,et al.  Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory , 1998, cond-mat/9807418.

[53]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[54]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  Vogl,et al.  Generalized Kohn-Sham schemes and the band-gap problem. , 1996, Physical review. B, Condensed matter.

[57]  See,et al.  Electronic properties of ultrathin Cu and Fe films on TiO2(110) studied by photoemission and inverse photoemission. , 1994, Physical review. B, Condensed matter.

[58]  Y. Tezuka,et al.  Photoemission and Bremsstrahlung Isochromat Spectroscopy Studies of TiO2 (Rutile) and SrTiO3 , 1994 .

[59]  S. Massidda,et al.  Hartree-Fock LAPW approach to the electronic properties of periodic systems. , 1993, Physical review. B, Condensed matter.

[60]  Zhang,et al.  Evaluation of quasiparticle energies for semiconductors without inversion symmetry. , 1989, Physical review. B, Condensed matter.

[61]  R. Needs,et al.  Metal-insulator transition in Kohn-Sham theory and quasiparticle theory. , 1989, Physical review letters.

[62]  Louie,et al.  Ab initio static dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators. , 1987, Physical review. B, Condensed matter.

[63]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[64]  Baldereschi,et al.  Self-consistent Hartree-Fock and screened-exchange calculations in solids: Application to silicon. , 1986, Physical review. B, Condensed matter.

[65]  Baroni,et al.  Ab initio calculation of the macroscopic dielectric constant in silicon. , 1986, Physical review. B, Condensed matter.

[66]  Louie,et al.  First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. , 1985, Physical review letters.

[67]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[68]  C. Kittel Introduction to solid state physics , 1954 .

[69]  S. Louie,et al.  Chapter 2 Predicting Materials and Properties: Theory of the Ground and Excited State , 2006 .

[70]  Rabe,et al.  Optimized pseudopotentials. , 1990, Physical review. B, Condensed matter.

[71]  Richard M. Martin,et al.  Microscopic theory of force constants in the adiabatic approximation , 1970 .