Particle in Cell Simulation of Low Temperature Laboratory Plasmas

Several applications of PIC simulations for understanding basic physics phenomena in low-temperature plasmas are presented: capacitive radiofrequency discharges in Oxygen, dusty plasmas and negative ion sources for heating of fusion plasmas. The analysis of these systems based on their microscopic properties as accessible with PIC gives improved insight into their complex behavior. These studies are results of joint efforts over about one decade of research groups from Greifswald University, Germany; Bari University, Italy; Keio University, Japan and Innsbruck University, Austria. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  B. Jackson Eley-Rideal reactions between H atoms on metal and graphite surfaces. , 2001 .

[2]  J. Goree,et al.  Three-dimensional strongly coupled plasma crystal under gravity conditions. , 2000, Physical review letters.

[3]  Kostya Ostrikov,et al.  Dynamic self-organization phenomena in complex ionized gas systems : new paradigms and technological aspects , 2004 .

[4]  S. Vladimirov,et al.  Plasma kinetics around a dust grain in an ion flow. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Ian H. Hutchinson,et al.  Ion collection by a sphere in a flowing plasma: 3. Floating potential and drag force , 2004 .

[6]  V. Ivanov,et al.  Comparison of a one-dimensional particle-in-cell–Monte Carlo model and a one-dimensional fluid model for a CH4/H2 capacitively coupled radio frequency discharge , 2002 .

[7]  M. Bacal,et al.  Effects of a weak transverse magnetic field on negative ion transport in negative ion sources , 2004 .

[8]  M. Lieberman,et al.  Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. II. Comparisons with laboratory measurements of electron energy distribution functions , 1993 .

[9]  P. D. Gennes,et al.  Superconductivity of metals and alloys , 1966 .

[10]  R. Schneider,et al.  Modeling of a negative ion source. I. Gas kinetics and dynamics in the expansion region , 2007 .

[11]  J. Shon,et al.  Capacitively coupled plasma source operating in Xe/Ar mixtures , 2005 .

[12]  André Bouchoule,et al.  Dusty plasmas : physics, chemistry, and technological impacts in plasma processing , 2000 .

[13]  T. Inoue,et al.  The origin of beam non-uniformity in a large Cs-seeded negative ion source , 2006 .

[14]  A. Hatayama,et al.  Analysis of negative ion velocity distribution at the extraction holes in a negative ion source , 2002 .

[15]  J. Goree,et al.  Particle simulation of two dimensional dust crystal formation in a mesothermal plasma flow , 1996 .

[16]  M. Persson,et al.  ELEY-RIDEAL AND HOT-ATOM REACTIONS OF H(D) ATOMS WITH D(H)-COVERED CU(111)SURFACES; QUASICLASSICAL STUDIES , 1999 .

[17]  R. Schneider,et al.  Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. Experiment and simulation , 2004 .

[18]  M. Zeuner,et al.  Plasma diagnostics for surface modification of polymers , 1998 .

[19]  Mario Capitelli,et al.  CROSS SECTION DATA FOR ELECTRON-IMPACT INELASTIC PROCESSES OF VIBRATIONALLY EXCITED MOLECULES OF HYDROGEN AND ITS ISOTOPES , 2001 .

[20]  M. Lieberman,et al.  Ion energy distributions in rf sheaths; review, analysis and simulation , 1999 .

[21]  K. Nanbu,et al.  Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and cases , 2000 .

[22]  M. Capitelli,et al.  Towards a Cross Section Database of Excited Atomic and Molecular Hydrogen , 2002 .

[23]  W. Schwarzenbach,et al.  Reconstruction of the time-averaged sheath potential profile in an argon radiofrequency plasma using the ion energy distribution , 1995 .

[24]  O. Fukumasa,et al.  Modelling of negative ion transport in caesium-seeded volume negative ion sources , 2006 .

[25]  G. Ganguli,et al.  Interactions between dust grains in a dusty plasma , 2000 .

[26]  Andrew G. Glen,et al.  APPL , 2001 .

[27]  Maheswaran Surendra,et al.  A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges , 1995 .

[28]  D. Riz,et al.  Modeling of negative ion transport in a plasma source (invited) , 1998 .

[29]  Ian H. Hutchinson,et al.  Collisionless ion drag force on a spherical grain , 2006 .

[30]  A. Karo,et al.  Recombination and dissociation of H2+ and H3+ ions on surfaces to form H2(v‘): Negative‐ion formation on low‐work‐function surfaces , 1990 .

[31]  A. Piel,et al.  Confinement of Coulomb balls , 2005 .

[32]  P. Krstic,et al.  Inelastic Processes from Vibrationally Excited States in Slow H , 2002 .

[33]  D. Tanenbaum,et al.  Nanoparticle deposition in hydrogenated amorphous silicon films during rf plasma deposition , 1996 .

[34]  J. Gudmundsson Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules , 2004 .

[35]  C. Mahony,et al.  Structure observed in measured electron energy distribution functions in capacitively coupled radio frequency hydrogen plasmas , 1999 .

[36]  T. Takizuka,et al.  Two‐Dimensional Simulation Study on Charging of Dust Particle on Plasma‐FacingWall , 2006 .

[37]  A. Bogaerts,et al.  Numerical study of Ar/CF4/N2 discharges in single- and dual-frequency capacitively coupled plasma reactors , 2003 .

[38]  U. Fantz,et al.  Spectroscopy—a powerful diagnostic tool in source development , 2006 .

[39]  J. Boeuf,et al.  A fluid model for colloidal plasmas under microgravity conditions , 2003 .

[40]  M. Lieberman,et al.  Effects of dc bias on the kinetics and electrical properties of silicon dioxide grown in an electron cyclotron resonance plasma , 1991 .

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  J. Meichsner,et al.  Radio-frequency discharges in oxygen: II. Spatio-temporally resolved optical emission pattern , 2007 .

[43]  J. Allen,et al.  Probe theory - the orbital motion approach , 1992 .

[44]  M. Bacal,et al.  Effects of Transverse Magnetic Field and Spatial Potential on Negative Ion Transport in Negative Ion Sources , 2005 .

[45]  T. Trottenberg,et al.  Experimental determination of the charge on dust particles forming Coulomb lattices , 1994 .

[46]  Mario Capitelli,et al.  Plasma Kinetics in Atmospheric Gases , 2000 .

[47]  H. Shinno,et al.  Growth of silicon oxide on silicon in the thin film region in an oxygen plasma , 1992 .

[48]  D. Schultz,et al.  ELASTIC AND VIBRATIONALLY INELASTIC SLOW COLLISIONS : H + H2, H+ + H2 , 1999 .

[49]  M. Bacal,et al.  Particle-in-cell modeling of negative-ion transport and extraction processes in a hydrogen negative-ion source , 2006 .

[50]  M. Bacal,et al.  PHOTODETACHMENT DIAGNOSTICS OF PLASMA WITH A HIGH N/NE RATIO , 1996 .

[51]  J. D. Coleman,et al.  Physics and engineering , 1984 .

[52]  Michael A. Lieberman,et al.  From Fermi acceleration to collisionless discharge heating , 1998 .

[53]  M. Sasao,et al.  Dependence of H− extraction probability on filter magnetic field and gas pressure of a volume-type negative ion source , 2006 .

[54]  Hidenori Takahashi,et al.  Effects of bias potential upon H− density near a plasma grid of a negative ion source , 2006 .

[55]  M. Bacal,et al.  Physics aspects of negative ion sources , 2006 .

[56]  J. Peters,et al.  Volume production negative hydrogen ion sources , 2005, IEEE Transactions on Plasma Science.

[57]  H. Kandrup The distribution of forces in a perturbed system of self-gravitating point masses , 1993 .

[58]  S. Melnychuk,et al.  Negative surface ionization of hydrogen atoms and molecules , 1996 .

[59]  H. Fehske,et al.  Radio-frequency discharges in oxygen: I. Particle-based modelling , 2007, 0705.0495.

[60]  B. Heinemann,et al.  Analysis of plasma dynamics of a negative ion source based on probe measurements , 2004 .

[61]  A. Lichtenberg,et al.  Stochastic heating in single and dual frequency capacitive discharges , 2006 .

[62]  A. Karo,et al.  Mechanism for negative‐ion production in the surface‐plasma negative‐hydrogen‐ion source , 1976 .

[63]  N. Miyamoto,et al.  Neutral beams for ITER , 1996 .

[64]  R. Schneider,et al.  Kinetic modelling of dusty plasmas , 2004 .

[65]  Gregor E. Morfill,et al.  MACH CONES IN A COULOMB LATTICE AND A DUSTY PLASMA , 1999 .

[66]  Keishi Sakamoto,et al.  Improvement of beam uniformity by magnetic filter optimization in a Cs-seeded large negative-ion source , 2006 .

[67]  F. Gordillo-Vazquez,et al.  Atom and ion chemistry in low pressure hydrogen dc plasmas. , 2006, The journal of physical chemistry. A.

[68]  Samsonov,et al.  Laser-excited mach cones in a dusty plasma crystal , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  P. Krstić Inelastic Processes from vibratonally Excited States in Slow H+ + H2 and H + H2+ Collisions II: Dissociation. , 2003 .

[70]  C. Martens,et al.  Overview of the RF source development programme at IPP Garching , 2006 .

[71]  Takashi Abe,et al.  Coupled Rotational-Vibrational Relaxation of Molecular Hydrogen at High Temperatures , 2003 .

[72]  M. Bandyopadhyay Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments , 2004 .

[73]  Sven Järås,et al.  A review of the use of plasma techniques in catalyst preparation and catalytic reactions , 1996 .

[74]  R. Schneider,et al.  PIC‐MCC Modeling of a Capacitive RF discharge , 2004 .

[75]  K. Kawahata,et al.  Observation of dust particles by a laser scattering method in the JIPPT-IIU tokamak , 1997 .

[76]  David B. Graves,et al.  Electron heating in low‐pressure rf glow discharges , 1990 .

[77]  Ghpm Geert Swinkels Optical studies of micron-sized particles immersed in a plasma , 1999 .

[78]  E. Speth,et al.  Plasma diagnostic tools for optimizing negative hydrogen ion sources , 2006 .

[79]  J. Los,et al.  Theoretical models of the negative ionization of hydrogen on clean tungsten, cesiated tungsten and cesium surfaces at low energies , 1982 .

[80]  M. Turner,et al.  Measured and simulated electron energy distribution functions in a low‐pressure radio frequency discharge in argon , 1993 .

[81]  J. Winter,et al.  Dust in magnetic confinement fusion devices and its impact on plasma operation , 1999 .

[82]  H. Naitou,et al.  Relationship between extraction of H - ions optimized by plasma grid potential and plasma parameters in a bucket source , 1992 .

[83]  Vladimirov,et al.  Attraction of charged particulates in plasmas with finite flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[84]  Melzer,et al.  Experimental investigation of the melting transition of the plasma crystal. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[85]  Geng Cq,et al.  Lepton polarization asymmetry in B-->K(*)l+l- , 1996 .

[86]  J. Goree,et al.  Plasma crystal: Coulomb crystallization in a dusty plasma. , 1994, Physical review letters.

[87]  A. Hatayama,et al.  Monte Carlo simulation of negative ion production in the negative hydrogen ion source , 2000 .

[88]  Y. Belchenko Surface negative ion production in ion sources , 1993 .

[89]  K. Kishino,et al.  600-nm-Range GaInP/AlInP Strained Quantum Well Lasers Grown by Gas Source Molecular Beam Epitaxy , 1994 .

[90]  J. Goree,et al.  Experiments and molecular-dynamics simulation of elastic waves in a plasma crystal radiated from a small dipole source. , 2002, Physical review letters.

[91]  Ian H. Hutchinson,et al.  Ion collection by a sphere in a flowing plasma: 2. non-zero Debye length , 2003 .

[92]  M. Tomellini,et al.  Non-equilibrium vibrational kinetics and `hot atom' models in the recombination of hydrogen atoms on surfaces , 2001 .

[93]  R. Becker Simulations of H- extraction , 2006 .

[94]  Charles K. Birdsall,et al.  Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. I. Analysis of numerical techniques , 1993 .

[95]  Abdullah Al Mamun,et al.  Introduction to Dusty Plasma Physics , 2001 .

[96]  Gary S. Selwyn,et al.  In situ laser diagnostic studies of plasma‐generated particulate contamination , 1989 .

[97]  T. Fujioka,et al.  Modeling of Negative Ion Transport in Hydrogen Ion Sources —Estimation of Extracted H− Current , 2002 .

[98]  Marek J. Rubel,et al.  Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance , 2001 .

[99]  Ian H. Hutchinson,et al.  Ion collection by a sphere in a flowing plasma: I. Quasineutral , 2002 .

[100]  P. Koidl,et al.  Structured ion energy distribution in radio frequency glow‐discharge systems , 1989 .

[101]  S. Vladimirov,et al.  Kinetics of plasma flowing around two stationary dust grains. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  A. Bogaerts,et al.  Gas discharge plasmas and their applications , 2002 .

[103]  Vivek M. Vyas,et al.  Self-consistent three-dimensional model of dust particle transport and formation of Coulomb crystals in plasma processing reactors , 2002 .

[104]  J. Biersack,et al.  Reflection of low-energy hydrogen from solids , 1985 .

[105]  Bonnie,et al.  Observation of exceptionally high vibrational excitation of hydrogen molecules formed by wall recombination. , 1988, Physical review letters.

[106]  K. Sakamoto,et al.  Numerical Analysis of the Hydrogen Atom Density in a Negative Ion Source , 2007 .

[107]  P. Bryant,et al.  A review of liquid and crystalline plasmas—new physical states of matter? , 2002 .

[108]  K. Tachibana,et al.  Observation of Coulomb-Crystal Formation from Carbon Particles Grown in a Methane Plasma , 1994 .

[109]  M. Bacal,et al.  Development of multidimensional Monte Carlo simulation code for H− ion and neutral transport in H− ion sources , 2002 .

[110]  M. Lieberman,et al.  Electronegativity of low-pressure high-density oxygen discharges , 2001 .

[111]  G. Morfill,et al.  The plasma condensation: Liquid and crystalline plasmas , 1999 .

[112]  A. Hatayama,et al.  Numerical analysis of the spatial nonuniformity in a Cs-seeded H - ion source , 2006 .

[113]  Hall,et al.  Vibrational excitation of hydrogen via recombinative desorption of atomic hydrogen gas on a metal surface. , 1988, Physical review letters.

[114]  David Robert Schultz,et al.  Elastic processes involving vibrationally excited molecules in cold hydrogen plasmas , 2003 .

[115]  V. Rohde,et al.  Characterization of dust collected from ASDEX-Upgrade and LHD , 2003 .

[116]  Godyak,et al.  Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz. , 1990, Physical review letters.

[117]  K. Sakamoto,et al.  Negative Ion Production in High Electron Temperature Plasmas , 2007 .

[118]  Katsuhiro Shinto Okumura,et al.  Correlation between Negative Hydrogen Ion Production and Work Function of Plasma Grid Surface in a Cesium-Introduced Volume-Production-Type Negative Hydrogen Ion Source , 1996 .

[119]  Jae Koo Lee,et al.  Particle-in-cell Monte Carlo and fluid simulations of argon-oxygen plasma: Comparisons with experiments and validations , 2006 .

[120]  A. P. Nefedov,et al.  Radioactive dust levitation and its consequences for fusion devices , 2001 .

[121]  H. Ikezi Coulomb solid of small particles in plasmas , 1986 .

[122]  E. Granneman,et al.  The scattering of hydrogen from a cesiated tungsten surface , 1983 .

[123]  P. Koidl,et al.  Ion and electron dynamics in the sheath of radio‐frequency glow discharges , 1991 .

[124]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[125]  W. Goedheer,et al.  Hydrodynamic and Kinetic Modelling of Dust Free and Dusty Radio‐Frequency Discharges , 2004 .

[126]  W. Goedheer,et al.  Modeling of dust in a silane/hydrogen plasma , 2003 .

[127]  A. Piel,et al.  Dynamical processes in complex plasmas , 2002 .

[128]  S. Vladimirov Cooperative behavior of colloidal particles in a complex plasma , 2002 .

[129]  R. Boswell,et al.  Electron-sheath interaction in capacitive radio-frequency plasmas , 1992 .

[130]  R. Buss,et al.  Synthesis of silicon nitride particles in pulsed radio frequency plasmas , 1996 .

[131]  D. Riz,et al.  Modeling of negative ion transport in a plasma source , 2008 .

[132]  C. Clerc,et al.  Optical and transport properties of amorphous and microcrystalline silicon films prepared by excimer laser assisted rf glow-discharge deposition , 1998 .

[133]  M. Lieberman,et al.  On the plasma parameters of a planar inductive oxygen discharge , 2000 .

[134]  Ralf Schneider,et al.  Modeling of hydrocarbon species in ECR methane plasmas , 2003 .

[135]  E. Quandt,et al.  Negative ions and the role of metastable molecules in a capacitively coupled radiofrequency excited discharge in oxygen , 2000 .

[136]  P. Krstic,et al.  Charge Transfer Processes in Slow Collisions of Protons with Vibrationally Excited Hydrogen Molecules , 2002 .

[137]  A. Piel,et al.  Ion drag and thermophoretic forces acting on free falling charged particles in an rf-driven complex plasma , 2002 .

[138]  L. I,et al.  Coulomb lattice in a weakly ionized colloidal plasma , 1994 .

[139]  V. Kolobov,et al.  STOCHASTIC ELECTRON HEATING IN BOUNDED RADIO-FREQUENCY PLASMAS , 1996 .

[140]  M. Bacal,et al.  Numerical analysis of negative ion temperature in a negative ion source , 2004 .

[141]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[142]  M. Akiba,et al.  3D computer simulation of the primary electron orbits in a magnetic multipole plasma source , 1987 .

[143]  G. Turban,et al.  Study of oxygen/TEOS plasmas and thin SiOx films obtained in an helicon diffusion reactor , 1998 .

[144]  Melzer,et al.  Alignment and instability of dust crystals in plasmas. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.