Thermoelectric properties of Se-deficient and Pb-/Sn-codoped In4Pb0.01Sn0.03Se3−x polycrystalline compounds

[1]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[2]  Li-Min Wang,et al.  A Promising Mid‐Temperature Thermoelectric Material Candidate: Pb/Sn‐Codoped In4PbxSnySe3 , 2013, Advanced materials.

[3]  Yoo Jang Song,et al.  Small-polaron transport and thermoelectric properties of the misfit-layer composite (BiSe)1.09TaSe2/TaSe2 , 2013 .

[4]  L. Constantin,et al.  Relevance of coordinate and particle-number scaling in density-functional theory , 2013, 1301.4040.

[5]  J. Rhyee,et al.  Magnon gap formation and charge density wave effect on thermoelectric properties in SmNiC2 compound , 2012 .

[6]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[7]  Gen Li,et al.  Preparation and Thermoelectric Properties of Polycrystalline In4Sn3−x by Mechanical Alloying and Hot Pressing , 2012, Journal of Electronic Materials.

[8]  Ho Won Jang,et al.  Thermoelectric Properties of Indium-Selenium Nanocomposites Prepared by Mechanical Alloying and Spark Plasma Sintering , 2012, Journal of Electronic Materials.

[9]  Yong Liu,et al.  Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS , 2012, Journal of Alloys and Compounds.

[10]  Eunseog Cho,et al.  Effect of cationic substitution on the thermoelectric properties of In4−xMxSe2.95 compounds (M = Na, Ca, Zn, Ga, Sn, Pb; x = 0.1) , 2011 .

[11]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[12]  J. Shim,et al.  Enhancement of the Thermoelectric Figure‐of‐Merit in a Wide Temperature Range in In4Se3–xCl0.03 Bulk Crystals , 2011, Advanced materials.

[13]  Peter Rogl,et al.  A new generation of p-type didymium skutterudites with high ZT , 2011 .

[14]  Gang Chen,et al.  Effect of selenium deficiency on the thermoelectric properties of n-type In4Se3-x compounds , 2011 .

[15]  Hsin Wang,et al.  Thermoelectric properties of polycrystalline In4Se3 and In4Te3 , 2010 .

[16]  Sung‐Jin Kim,et al.  Thermoelectric properties and anisotropic electronic band structure on the In4Se3−x compounds , 2009 .

[17]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[18]  A. Petukhov,et al.  The anisotropic band structure of layered In4Se3(001) , 2008 .

[19]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[20]  A. Musyanovych,et al.  The interface microscopy and spectroscopy on the cleavage surfaces of the In4Se3 pure and copper-intercalated layered crystals , 2006 .

[21]  G. J. Snyder,et al.  Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.

[22]  H. Goldsmid,et al.  Estimation of the thermal band gap of a semiconductor from seebeck measurements , 1999 .

[23]  R. Pohl,et al.  Experimental determinations of the Lorenz number , 1993 .

[24]  G. Grüner,et al.  Density Waves In Solids , 1994 .