Prediction and feature analysis of intron retention events in plant genome

[1]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[2]  Christopher B. Burge,et al.  Maximum Entropy Modeling of Short Sequence Motifs with Applications to RNA Splicing Signals , 2004, J. Comput. Biol..

[3]  K. Huse,et al.  Non-EST based prediction of exon skipping and intron retention events using Pfam information , 2005, Nucleic acids research.

[4]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[5]  Yanda Li,et al.  Support Vector Machine Approach for Retained Introns Prediction Using Sequence Features , 2006, ISNN.

[6]  M. Irimia,et al.  Intron mis-splicing: no alternative? , 2008, Genome Biology.

[7]  Achim Zeileis,et al.  Conditional variable importance for random forests , 2008, BMC Bioinformatics.

[8]  B. Frey,et al.  Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing , 2008, Nature Genetics.

[9]  U. Leser,et al.  Gene mention normalization and interaction extraction with context models and sentence motifs , 2008, Genome Biology.

[10]  O. Jaillon,et al.  Translational control of intron splicing in eukaryotes , 2008, Nature.

[11]  C. Will,et al.  The Spliceosome: Design Principles of a Dynamic RNP Machine , 2009, Cell.

[12]  Junhyong Kim,et al.  Cytoplasmic Intron Sequence-Retaining Transcripts Can Be Dendritically Targeted via ID Element Retrotransposons , 2011, Neuron.

[13]  Yamile Marquez,et al.  Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis , 2011, Nucleic acids research.

[14]  Yamile Marquez,et al.  Alternative splicing in plants – coming of age , 2012, Trends in plant science.

[15]  V. Rocchi,et al.  Intron retention regulates the expression of pectin methyl esterase inhibitor (Pmei) genes during wheat growth and development. , 2012, Plant biology.

[16]  Yamile Marquez,et al.  Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis , 2012, Genome research.

[17]  M. Selbach,et al.  Orchestrated Intron Retention Regulates Normal Granulocyte Differentiation , 2013, Cell.

[18]  Alexander F. Palazzo,et al.  ALREX‐elements and introns: two identity elements that promote mRNA nuclear export , 2013, Wiley interdisciplinary reviews. RNA.

[19]  C. M. van der Weele,et al.  Removal of retained introns regulates translation in the rapidly developing gametophyte of Marsilea vestita. , 2013, Developmental cell.

[20]  Junchi Yan,et al.  Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection , 2014, Comput. Biol. Chem..

[21]  John W. S. Brown,et al.  The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana , 2013, Nucleic acids research.

[22]  A. Kornblihtt,et al.  Let there be light: Regulation of gene expression in plants , 2014, RNA biology.

[23]  C. Liang,et al.  Comparative Analyses between Retained Introns and Constitutively Spliced Introns in Arabidopsis thaliana Using Random Forest and Support Vector Machine , 2014, PloS one.

[24]  Miguel C. Teixeira,et al.  Intron Retention in the 5′UTR of the Novel ZIF2 Transporter Enhances Translation to Promote Zinc Tolerance in Arabidopsis , 2014, PLoS genetics.

[25]  K. Scholthof,et al.  Genome-Wide Analysis of Alternative Splicing Landscapes Modulated during Plant-Virus Interactions in Brachypodium distachyon , 2015, Plant Cell.

[26]  K. Hornik,et al.  A Laboratory for Recursive Partytioning , 2015 .

[27]  Yang Li,et al.  GPCR-drug interactions prediction using random forest with drug-association-matrix-based post-processing procedure , 2016, Comput. Biol. Chem..

[28]  Amy Y. M. Au,et al.  Intron retention in mRNA: No longer nonsense , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.