Universally Composable Symbolic Security Analysis

In light of the growing complexity of cryptographic protocols and applications, it becomes highly desirable to mechanize—and eventually automate—the security analysis of protocols. A natural step towards automation is to allow for symbolic security analysis. However, the complexity of mechanized symbolic analysis is typically exponential in the space and time complexities of the analyzed system. Thus, full automation via direct analysis of the entire given system has so far been impractical even for systems of modest complexity.We propose an alternative route to fully automated and efficient security analysis of systems with no a priori bound on the complexity. We concentrate on systems that have an unbounded number of components, where each component is of small size. The idea is to perform symbolic analysis that guarantees composable security. This allows applying the automated analysis only to individual components, while still guaranteeing security of the overall system.We exemplify the approach in the case of authentication and key-exchange protocols of a specific format. Specifically, we formulate and mechanically assert symbolic properties that correspond to concrete security properties formulated within the Universally Composable security framework. As an additional contribution, we demonstrate that the traditional symbolic secrecy criterion for key exchange provides an inadequate security guarantee (regardless of the complexity of verification) and propose a new symbolic criterion that guarantees composable concrete security.

[1]  Martín Abadi,et al.  Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption)* , 2001, Journal of Cryptology.

[2]  Martín Abadi,et al.  Formal Eavesdropping and Its Computational Interpretation , 2001, TACS.

[3]  Hugo Krawczyk,et al.  Relaxing Chosen-Ciphertext Security , 2003, CRYPTO.

[4]  Bruno Blanchet,et al.  An efficient cryptographic protocol verifier based on prolog rules , 2001, Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001..

[5]  Martín Abadi,et al.  A logic of authentication , 1990, TOCS.

[6]  Daniele Micciancio,et al.  Adaptive Security of Symbolic Encryption , 2005, TCC.

[7]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[8]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[9]  Ran Canetti,et al.  Universally composable signature, certification, and authentication , 2004, Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004..

[10]  John C. Mitchell,et al.  Multiset rewriting and the complexity of bounded security protocols , 2004, J. Comput. Secur..

[11]  Akshay Patil On symbolic analysis of cryptographic protocols , 2005 .

[12]  Catherine A. Meadows,et al.  Applying Formal Methods to the Analysis of a Key Management Protocol , 1992, J. Comput. Secur..

[13]  Gavin Lowe,et al.  Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR , 1996, Softw. Concepts Tools.

[14]  John C. Mitchell,et al.  A probabilistic poly-time framework for protocol analysis , 1998, CCS '98.

[15]  Bogdan Warinschi,et al.  Soundness of Formal Encryption in the Presence of Active Adversaries , 2004, TCC.

[16]  Oded Goldreich,et al.  Definitions and properties of zero-knowledge proof systems , 1994, Journal of Cryptology.

[17]  Virgil D. Gligor,et al.  Weak Key Authenticity and the Computational Completeness of Formal Encryption , 2003, CRYPTO.

[18]  Lawrence C. Paulson,et al.  The Inductive Approach to Verifying Cryptographic Protocols , 2021, J. Comput. Secur..

[19]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[20]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[21]  Dawn Xiaodong Song Athena: a new efficient automatic checker for security protocol analysis , 1999, Proceedings of the 12th IEEE Computer Security Foundations Workshop.

[22]  John C. Mitchell,et al.  Probabilistic Polynomial-Time Equivalence and Security Analysis , 1999, World Congress on Formal Methods.

[23]  Gavin Lowe,et al.  An Attack on the Needham-Schroeder Public-Key Authentication Protocol , 1995, Inf. Process. Lett..

[24]  Ben Smyth,et al.  ProVerif 1.85: Automatic Cryptographic Protocol Verifier, User Manual and Tutorial , 2011 .

[25]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[26]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[27]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[28]  Silvio Micali,et al.  Secure Computation (Abstract) , 1991, CRYPTO.

[29]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[30]  F. Javier Thayer Fábrega,et al.  Strand spaces: proving security protocols correct , 1999 .

[31]  Moni Naor,et al.  Non-malleable cryptography , 1991, STOC '91.

[32]  Birgit Pfitzmann,et al.  Cryptographically sound theorem proving , 2006, 19th IEEE Computer Security Foundations Workshop (CSFW'06).

[33]  Bogdan Warinschi,et al.  Completeness Theorems for the Abadi-Rogaway Language of Encrypted Expressions , 2004, J. Comput. Secur..

[34]  Bruno Blanchet,et al.  Automatic proof of strong secrecy for security protocols , 2004, IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004.

[35]  Leonid A. Levin,et al.  Fair Computation of General Functions in Presence of Immoral Majority , 1990, CRYPTO.

[36]  Jonathan Herzog,et al.  A computational interpretation of Dolev-Yao adversaries , 2005, Theor. Comput. Sci..

[37]  Joshua D. Guttman,et al.  Programming Cryptographic Protocols , 2005, TGC.

[38]  Oded Goldreich Foundations of Cryptography: Index , 2001 .

[39]  Martín Abadi,et al.  A Calculus for Cryptographic Protocols: The spi Calculus , 1999, Inf. Comput..

[40]  John C. Mitchell,et al.  A meta-notation for protocol analysis , 1999, Proceedings of the 12th IEEE Computer Security Foundations Workshop.

[41]  Hugo Krawczyk,et al.  Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels , 2001, EUROCRYPT.

[42]  Ran Canetti,et al.  Security and Composition of Multiparty Cryptographic Protocols , 2000, Journal of Cryptology.

[43]  Danny Dolev,et al.  On the security of public key protocols , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[44]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[45]  Shafi Goldwasser,et al.  Advances in Cryptology — CRYPTO’ 88: Proceedings , 1990, Lecture Notes in Computer Science.

[46]  Ran Canetti,et al.  Universal Composition with Joint State , 2003, CRYPTO.

[47]  Peeter Laud,et al.  Symmetric encryption in automatic analyses for confidentiality against active adversaries , 2004, IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004.

[48]  Roger M. Needham,et al.  Using encryption for authentication in large networks of computers , 1978, CACM.

[49]  Birgit Pfitzmann,et al.  Composition and integrity preservation of secure reactive systems , 2000, CCS.

[50]  Jonathan Herzog,et al.  Computational soundness for standard assumptions of formal cryptography , 2004 .

[51]  Birgit Pfitzmann,et al.  A cryptographically sound security proof of the Needham-Schroeder-Lowe public-key protocol , 2003, IEEE Journal on Selected Areas in Communications.

[52]  Birgit Pfitzmann,et al.  A composable cryptographic library with nested operations , 2003, CCS '03.

[53]  Joan Feigenbaum,et al.  Advances in Cryptology-Crypto 91 , 1992 .

[54]  Ran Canetti,et al.  Universally Composable Symbolic Analysis of Cryptographic Protocols (The case of encryption-based mutual authentication and key exchange) , 2004, IACR Cryptol. ePrint Arch..

[55]  Dan Boneh,et al.  Advances in Cryptology - CRYPTO 2003 , 2003, Lecture Notes in Computer Science.

[56]  Donald Beaver,et al.  Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority , 2004, Journal of Cryptology.

[57]  Jonathan Herzog,et al.  Soundness of Formal Encryption in the Presence of Key-Cycles , 2005, ESORICS.

[58]  Silvio Micali,et al.  The Notion of Security for Probabilistic Cryptosystems , 1986, CRYPTO.

[59]  Richard M. Karp,et al.  On the Security of Ping-Pong Protocols , 1982, Inf. Control..

[60]  Birgit Pfitzmann,et al.  Relating Symbolic and Cryptographic Secrecy , 2005, IEEE Trans. Dependable Secur. Comput..

[61]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.

[62]  Véronique Cortier,et al.  Computationally Sound, Automated Proofs for Security Protocols , 2005, ESOP.

[63]  Nancy A. Lynch,et al.  I/O automaton models and proofs for shared-key communication systems , 1999, Proceedings of the 12th IEEE Computer Security Foundations Workshop.

[64]  Silvio Micali,et al.  Plaintext Awareness via Key Registration , 2003, CRYPTO.

[65]  Bruno Blanchet,et al.  Computationally Sound Mechanized Proofs of Correspondence Assertions , 2007, 20th IEEE Computer Security Foundations Symposium (CSF'07).

[66]  Daniel R. Simon,et al.  Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack , 1991, CRYPTO.

[67]  Moni Naor,et al.  Nonmalleable Cryptography , 2000, SIAM Rev..

[68]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..

[69]  Oded Goldreich Foundations of Cryptography: Volume 1 , 2006 .

[70]  Oded Goldreich,et al.  Foundations of Cryptography: List of Figures , 2001 .

[71]  Mihir Bellare,et al.  Entity Authentication and Key Distribution , 1993, CRYPTO.

[72]  Oded Goldreich,et al.  On the security of multi-party ping-pong protocols , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[73]  Birgit Pfitzmann,et al.  A Composable Cryptographic Library with Nested Operations (Extended Abstract) , 2003 .

[74]  John C. Mitchell,et al.  Automated analysis of cryptographic protocols using Mur/spl phi/ , 1997, Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097).