Efficient high NA flat micro-lenses realized using high contrast transmitarrays

We present design, fabrication, and characterization results of high numerical aperture (NA) micro-lenses based on a high contrast transmitarray platform. The high contrast transmitarray is created by periodic arrangement of amorphous silicon posts with different diameters on a fused silica substrate. We report near infrared high NA micro-lenses with spot sizes as small as 0.57λ and focusing efficiencies in excess of 80%. We demonstrate a trade-off relation between NA and efficiency of high contrast array flat micro-lenses, and attribute it to the spatial discretization of their phase profiles.

[1]  Andrei Faraon,et al.  Fundamental limits of ultrathin metasurfaces , 2014, Scientific Reports.

[2]  H. Craighead,et al.  Diffractive phase elements based on two-dimensional artificial dielectrics. , 1995, Optics letters.

[3]  Guillaume Huyet,et al.  Experimental high numerical aperture focusing with high contrast gratings. , 2013, Optics letters.

[4]  K. Wasa,et al.  Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography. , 1987, Applied optics.

[5]  Marco Fiorentino,et al.  Sub-Wavelength Grating Lenses With a Twist , 2014, IEEE Photonics Technology Letters.

[6]  Vadim Karagodsky,et al.  Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. , 2010, Optics express.

[7]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[8]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[9]  P. Chavel,et al.  Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. , 1998, Optics letters.

[10]  Kristofer S. J. Pister,et al.  Micro-machined three-dimensional micro-optics for integrated free-space optical system , 1994, IEEE Photonics Technology Letters.

[11]  Ebrahim Karimi,et al.  Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface , 2014, Light: Science & Applications.

[12]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[13]  W Stork,et al.  Artificial distributed-index media fabricated by zero-order gratings. , 1991, Optics letters.

[14]  G. A. Vawter,et al.  High-efficiency subwavelength diffractive optical element in GaAs for 975 nm. , 1995, Optics letters.

[15]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[16]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[17]  H. Nishihara,et al.  Blazed gratings and Fresnel lenses fabricated by electron-beam lithography. , 1982, Optics letters.

[18]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[19]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[20]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[21]  Federico Capasso,et al.  Ultra-thin plasmonic optical vortex plate based on phase discontinuities , 2012 .

[23]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[24]  Yi Chiu,et al.  High numerical-aperture microlens fabricated by focused ion beam milling , 2007, Optical Data Storage.

[25]  R. Ghodssi,et al.  Development of a deep silicon phase Fresnel lens using Gray-scale lithography and deep reactive ion etching , 2004, Journal of Microelectromechanical Systems.

[26]  H. Craighead,et al.  Diffractive lens fabricated with mostly zeroth-order gratings. , 1996, Optics letters.

[27]  Andrei Faraon,et al.  Reflective silicon binary diffraction grating for visible wavelengths , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[28]  H. Nishihara,et al.  Laser beam lithographed micro-Fresnel lenses. , 1990, Applied optics.

[29]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[30]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[31]  Qiwen Zhan,et al.  Three-dimensional focus shaping with cylindrical vector beams , 2006 .

[32]  T. Mitsuyu,et al.  Reflection micro-Fresnel lenses and their use in an integrated focus sensor. , 1989, Applied Optics.

[33]  N. Zheludev,et al.  Nanohole array as a lens. , 2008, Nano letters.

[34]  D. Fattal,et al.  Controlling the phase front of optical fiber beams using high contrast metastructures , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.