Efficient Bit-Parallel Multiplier for All Trinomials Based on n-Term Karatsuba Algorithm

Recently, hybrid multiplication schemes over the binary extension field <inline-formula> <tex-math notation="LaTeX">$GF(2^{m})$ </tex-math></inline-formula> based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-term Karatsuba algorithm (KA) have been proposed for irreducible trinomials. Their complexities depend on a decomposition of <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> and the choice of a generation polynomial. However, these multipliers have some limitations on a decomposition of <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> or generation polynomial <inline-formula> <tex-math notation="LaTeX">$x^{m}+x^{k}+1$ </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">$m\geq 2k$ </tex-math></inline-formula>. In this paper, we loosen such limited conditions. We present a new hybrid bit-parallel multiplier based on <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-term KA for any irreducible trinomial <inline-formula> <tex-math notation="LaTeX">$x^{m}+x^{k}+1\,\,(0< k< m)$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> is decomposed as <inline-formula> <tex-math notation="LaTeX">$m=nm_{0}+r$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$0< r< m_{0}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$1< n$ </tex-math></inline-formula>. (Here, various values for <inline-formula> <tex-math notation="LaTeX">$n,m_{0}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula> may be chosen.) To this end, we generalize the previously proposed multiplication scheme for <inline-formula> <tex-math notation="LaTeX">$x^{nm_{0}+1}+x^{k}+1$ </tex-math></inline-formula> into <inline-formula> <tex-math notation="LaTeX">$x^{nm_{0}+r}+x^{k}+1$ </tex-math></inline-formula>. We evaluate the explicit complexity of the proposed multiplier. Specific comparisons show that the proposed multiplier achieves the lowest space complexity with the same or lower time complexity among hybrid multipliers. Compared to the fastest multipliers, the time complexity of the proposed multiplier costs only <inline-formula> <tex-math notation="LaTeX">$T_{X}$ </tex-math></inline-formula> higher while its space complexity is much lower (it has roughly 40% reduced space complexity), where <inline-formula> <tex-math notation="LaTeX">$T_{X}$ </tex-math></inline-formula> is the delay of one 2-input XOR gate.

[1]  Yiqi Dai,et al.  Fast Bit-Parallel GF(2^n) Multiplier for All Trinomials , 2005, IEEE Trans. Computers.

[2]  Haining Fan A Chinese Remainder Theorem Approach to Bit-Parallel $GF(2^{n})$ Polynomial Basis Multipliers for Irreducible Trinomials , 2016, IEEE Transactions on Computers.

[3]  M. Anwar Hasan,et al.  Low complexity bit parallel architectures for polynomial basis multiplication over GF(2m) , 2004, IEEE Transactions on Computers.

[4]  Dowon Hong,et al.  Low Space Complexity $GF(2^m)$ Multiplier for Trinomials Using $n$ -Term Karatsuba Algorithm , 2019, IEEE Access.

[5]  Shantanu Sharma,et al.  On the Complexity of Hybrid $n$ -Term Karatsuba Multiplier for Trinomials , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Yin Li,et al.  Novel bit-parallel multiplier for GF(2m) defined by all-one polynomial using generalized Karatsuba algorithm , 2014, Inf. Process. Lett..

[7]  Michele Elia,et al.  Low Complexity Bit-Parallel Multipliers for GF(2^m) with Generator Polynomial x^m+x^k+1 , 1999 .

[8]  Dowon Hong,et al.  Space Efficient $GF(2^m)$ Multiplier for Special Pentanomials Based on $n$ -Term Karatsuba Algorithm , 2020, IEEE Access.

[9]  Berk Sunar,et al.  A generalized method for constructing subquadratic complexity GF(2/sup k/) multipliers , 2004, IEEE Transactions on Computers.

[10]  Yin Li,et al.  New bit-parallel Montgomery multiplier for trinomials using squaring operation , 2016, Integr..

[11]  Yin Li,et al.  Speedup of bit-parallel Karatsuba multiplier in GF(2m) generated by trinomials , 2011, Inf. Process. Lett..

[12]  Yin Li,et al.  Mastrovito Form of Non-Recursive Karatsuba Multiplier for All Trinomials , 2017, IEEE Transactions on Computers.

[13]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[14]  Haibin Shen,et al.  Low complexity bit parallel multiplier for GF(2m) generated by equally-spaced trinomials , 2008, Inf. Process. Lett..

[15]  Haining Fan,et al.  Fast Bit Parallel-Shifted Polynomial Basis Multipliers in $GF(2^{n})$ , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Xiaoli Guo,et al.  N-Term Karatsuba Algorithm and its Application to Multiplier Designs for Special Trinomials , 2018, IEEE Access.

[17]  Arash Reyhani-Masoleh,et al.  Bit-Serial and Bit-Parallel Montgomery Multiplication and Squaring over GF(2^m) , 2009, IEEE Transactions on Computers.

[18]  Ming Gu,et al.  Overlap-free Karatsuba-Ofman polynomial multiplication algorithms , 2010 .

[19]  Christof Paar,et al.  Generalizations of the Karatsuba Algorithm for Efficient Implementations , 2006, IACR Cryptol. ePrint Arch..