Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR

[1]  D. Dionysiou,et al.  HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water , 2013 .

[2]  M. Xing,et al.  Study of Synergistic Effect of Ce- and S-Codoping on the Enhancement of Visible-Light Photocatalytic Activity of TiO2 , 2013 .

[3]  M. Paganini,et al.  Mechanism of the Photoactivity under Visible Light of N-Doped Titanium Dioxide. Charge Carriers Migration in Irradiated N-TiO2 Investigated by Electron Paramagnetic Resonance. , 2012 .

[4]  N. Ioannidis,et al.  Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles , 2012, Nanotechnology.

[5]  Haifeng Xu,et al.  One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI) , 2012 .

[6]  S. Sampath,et al.  Enhanced Raman spectroscopy of molecules adsorbed on carbon-doped TiO₂ obtained from titanium carbide: a visible-light-assisted renewable substrate. , 2012, ACS applied materials & interfaces.

[7]  D. Dionysiou,et al.  Efficient removal of microcystin-LR by UV-C/H₂O₂ in synthetic and natural water samples. , 2012, Water research.

[8]  A. K. Ray,et al.  Visible-Solar-Light-Driven Photocatalytic Degradation of Phenol with Dye-Sensitized TiO2: Parametric and Kinetic Study , 2012 .

[9]  X. Lü,et al.  One-step high-temperature solvothermal synthesis of TiO2/sulfide nanocomposite spheres and their solar visible-light applications. , 2012, ACS applied materials & interfaces.

[10]  D. Bahnemann,et al.  A study of the kinetic solvent isotope effect on the destruction of microcystin-LR and geosmin using TiO2 photocatalysis , 2011 .

[11]  Dionysios D. Dionysiou,et al.  Innovative visible light-activated sulfur doped TiO2 films for water treatment , 2011 .

[12]  Peter J Vikesland,et al.  Drop coating deposition Raman (DCDR) for microcystin-LR identification and quantitation. , 2011, Environmental science & technology.

[13]  Jinlong Zhang,et al.  A new approach toward carbon-modified vanadium-doped titanium dioxide photocatalysts. , 2011, ACS applied materials & interfaces.

[14]  R. Tolosana-Delgado,et al.  Discrimination of TiO2 polymorphs in sedimentary and metamorphic rocks , 2011 .

[15]  Tiehong Chen,et al.  Boron Environments in B-Doped and (B, N)-Codoped TiO2 Photocatalysts: A Combined Solid-State NMR and Theoretical Calculation Study , 2011 .

[16]  Yanfen Fang,et al.  Unique ability of BiOBr to decarboxylate d-Glu and d-MeAsp in the photocatalytic degradation of microcystin-LR in water. , 2011, Environmental science & technology.

[17]  K. Parida,et al.  Facile Synthesis of N- and S-Incorporated Nanocrystalline TiO2 and Direct Solar-Light-Driven Photocatalytic Activity , 2010 .

[18]  Lirong Song,et al.  Activation of Nrf2 by microcystin-LR provides advantages for liver cancer cell growth. , 2010, Chemical research in toxicology.

[19]  D. Dionysiou,et al.  Degradation of microcystin-LR using sulfate radicals generated through photolysis, thermolysis and e− transfer mechanisms , 2010 .

[20]  R. Gómez,et al.  Sulfated titania [TiO2/SO42−]: A very active solid acid catalyst for the esterification of free fatty acids with ethanol , 2010 .

[21]  B. Lee,et al.  Deactivation and regeneration of visible light active brookite titania in photocatalytic degradation of organic dye , 2010 .

[22]  J. Moser,et al.  Synthesis, Characterization, and Photocatalytic Activities of Nanoparticulate N, S-Codoped TiO2 Having Different Surface-to-Volume Ratios , 2010 .

[23]  Hyunwoong Park,et al.  Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2 , 2010 .

[24]  Jing Zhang,et al.  Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. , 2010, Analytical chemistry.

[25]  D. Dionysiou,et al.  Impact of the morphological properties of thin TiO2 photocatalytic films on the detoxification of water contaminated with the cyanotoxin, microcystin-LR , 2009 .

[26]  Yue Liu,et al.  A Simple Two-Step Template Approach for Preparing Carbon-Doped Mesoporous TiO2 Hollow Microspheres , 2009 .

[27]  Elias Stathatos,et al.  Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water ☆ , 2009 .

[28]  J. Madarász,et al.  Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG–FTIR and TG/DTA–MS in air: Part 2. Precursor from thiourea and titanium(IV)-n-butoxide , 2009 .

[29]  B. Lee,et al.  Study of visible light photocatalytic activity achieved by NMP solvent treatment of polymorphic titania , 2009 .

[30]  Lizhi Zhang,et al.  Controllable One-Pot Synthesis and Enhanced Photocatalytic Activity of Mixed-Phase TiO2 Nanocrystals with Tunable Brookite/Rutile Ratios , 2009 .

[31]  C. Pulgarin,et al.  Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light , 2008 .

[32]  W. Jin,et al.  Mechanism of nitrogen-concentration dependence on pH value: Experimental and theoretical studies on nitrogen-doped TiO2 , 2008 .

[33]  Zhongbiao Wu,et al.  Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect , 2008, Nanotechnology.

[34]  S. Pillai,et al.  Improved High-Temperature Stability and Sun-Light-Driven Photocatalytic Activity of Sulfur-Doped Anatase TiO2 , 2008 .

[35]  Shouxin Liu,et al.  A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. , 2008, Journal of hazardous materials.

[36]  Yuexiang Li,et al.  Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution , 2008 .

[37]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[38]  B. Lee,et al.  Experimental variables in the synthesis of brookite phase TiO2 nanoparticles , 2007 .

[39]  Xinyu Zhang,et al.  Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. , 2007, Environmental science & technology.

[40]  Dong Yang,et al.  Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity , 2007 .

[41]  Y. Kaneko,et al.  High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite , 2007 .

[42]  Z. Zou,et al.  Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 , 2007 .

[43]  S. Balaji,et al.  Phonon confinement studies in nanocrystalline anatase‐TiO2 thin films by micro Raman spectroscopy , 2006 .

[44]  C. Ni,et al.  Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol , 2006 .

[45]  J. Striová,et al.  Prehistoric Anasazi ceramics studied by micro-Raman spectroscopy , 2006 .

[46]  E. A. Payzant,et al.  Synthesis of brookite TiO2 nanoparticles by ambient conditon sol process , 2006 .

[47]  G. Pacchioni,et al.  Theory of Carbon Doping of Titanium Dioxide , 2005 .

[48]  S. Pratsinis,et al.  Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry , 2005 .

[49]  D. Bahnemann,et al.  The photocatalytic destruction of the cyanotoxin, nodularin using TiO2 , 2005 .

[50]  Toshinori Mori,et al.  Preparation of visible-light-responsive TiO2-xNx photocatalyst by a sol-gel method: analysis of the active center on TiO2 that reacts with NH3. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[51]  Jiaguo Yu,et al.  Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. , 2005, Environmental science & technology.

[52]  W. Carmichael,et al.  Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR , 2005, Journal of Cancer Research and Clinical Oncology.

[53]  H. Kisch,et al.  Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2 , 2004 .

[54]  T. Tachikawa,et al.  Photocatalytic Oxidation Reactivity of Holes in the Sulfur- and Carbon-Doped TiO2 Powders Studied by Time-Resolved Diffuse Reflectance Spectroscopy , 2004 .

[55]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[56]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[57]  W. Choi,et al.  Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. , 2003, Environmental science & technology.

[58]  Jiaguo Yu,et al.  Direct Sonochemical Preparation and Characterization of Highly Active Mesoporous TiO2 with a Bicrystalline Framework , 2002 .

[59]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[60]  Peter K. J. Robertson,et al.  Hydrogen peroxide enhanced photocatalytic oxidation of microcystin-lR using titanium dioxide , 2000 .

[61]  V. Grassian,et al.  Transmission FT-IR and Knudsen Cell Study of the Heterogeneous Reactivity of Gaseous Nitrogen Dioxide on Mineral Oxide Particles , 1999 .

[62]  T. Waite,et al.  Photocatalytic Degradation of the Blue Green Algal Toxin Microcystin-LR in a Natural Organic-Aqueous Matrix , 1999 .

[63]  P. P. Lottici,et al.  Phonon confinement effects in the Raman scattering by TiO2 nanocrystals , 1998 .

[64]  G. Tompsett,et al.  The Raman spectrum of brookite, TiO2 (Pbca, Z = 8) , 1995 .

[65]  K. L. Tan,et al.  Surface modification of plasma-pretreated poly(tetrafluoroethylene) films by graft copolymerization , 1993 .