Miniature Ion Thrusters : A Review of Modern Technologies and Mission Capabilities

There are inherent challenges to ion thruster miniaturization, but many current thrusters exhibit desirable performance. Depending on mission requirements, modern ion thrusters provide thruster capabilities that are attractive for missions for both large and small spacecraft. In addition to providing (1) high specific impulse, Isp, (~1000 – 3000 s), these thrusters can provide (2) very precise thrust and impulse bits, (3) low disturbance thrust, and (4) low contamination and spacecraft interaction potential. These capabilities are attractive for high V exploration and orbit/inclination change missions, precision orbit maintenance, formation flying, or precision pointing/control. Many thruster options exist that employ RF, microwave, and DC ring cusp discharges. These thrusters use low contamination propellants such as xenon, but may also use highly-storable propellants such as iodine.

[1]  H. Loeb,et al.  Development of the radio frequency microthruster RIT 4 , 1972 .

[2]  Michael Tsay,et al.  LunarCube: A Deep Space 6U CubeSat with Mission Enabling Ion Propulsion Technology , 2015 .

[3]  R. Wirz,et al.  Development and Testing of a 3 cm Electron Bombardment Micro-Ion Thruster , 2001 .

[4]  Sven G. Bilen,et al.  Development and Chamber Testing of a Miniature Radio- Frequency Ion Thruster for Microspacecraft , 2004 .

[5]  Hiroyuki Koizumi,et al.  Performance Evaluation of a Miniature Ion Thruster μ1 with a Unipolar and Bipolar Operation , 2011 .

[6]  Juergen Mueller,et al.  Miniature Ion Thrusters for Precision Formation Flying , 2004 .

[7]  I. Katz,et al.  Fundamentals of Electric Propulsion: Ion and Hall Thrusters , 2008 .

[8]  Shinichi Nakasuka,et al.  50kg-class Deep Space Exploration Technology Demonstration Micro-spacecraft PROCYON , 2014 .

[9]  J. Hyman Performance optimized, small structurally integrated ion thruster system , 1973 .

[10]  Horst W. Loeb,et al.  ?NRIT-2.5 - a new optimized microthruster of Giessen University , 2009 .

[11]  James E. Polk,et al.  Experimental and computational investigation of the performance of a micro-ion thruster , 2002 .

[12]  Cheryl Collingwood,et al.  Investigation of a miniature differential ion thruster , 2011 .

[13]  Sven G. Bilen,et al.  Vacuum Testing of the Miniature Radio-Frequency Ion Thruster , 2005 .

[14]  Hiroyuki Koizumi,et al.  System Performance of a Microwave Discharge Miniature Ion Thruster , 2012 .

[15]  Ryan W. Conversano,et al.  Mission Capability Assessment of CubeSats Using a Miniature Ion Thruster , 2013 .

[16]  Richard E. Wirz,et al.  Development of Cathode Technologies for a Miniature Ion Thruster , 2003 .

[17]  Juergen Mueller,et al.  Survey of Propulsion Technologies Applicable to Cubesats , 2010 .

[18]  Yusuke Nakamura,et al.  Initial Flight Operations of the Miniature Propulsion System Installed on Small Space Probe: PROCYON , 2016 .

[19]  Hiroyuki Koizumi,et al.  Development of the Miniature Ion Propulsion System for 50 kg Small Spacecraft , 2012 .