Automated Surveillance Scenarios

In this article, wepresent Knight, anautomatedsurveillance systemdeployed in a varietyof real-worldscenarios rangingfrom railway securityto law enforcement.We also discuss thechallenges ofdevelopingsurveillance systems,present somesolutionsimplemented inKnight thatovercome thesechallenges, andevaluate Knight’sperformance inunconstrainedenvironments.

[1]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Mubarak Shah,et al.  Network video image processing for security, surveillance, and situational awareness , 2004, SPIE Defense + Commercial Sensing.

[3]  Mubarak Shah,et al.  A hierarchical approach to robust background subtraction using color and gradient information , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[4]  T. Fukuda,et al.  Scanning the issue/technology , 1999, Proc. IEEE.

[5]  M. Shah,et al.  KNIGHT M : A REAL TIME SURVEILLANCE SYSTEM FOR MULTIPLE OVERLAPPING AND NON-OVERLAPPING CAMERAS , 2003 .

[6]  Mubarak Shah,et al.  Tracking and Object Classification for Automated Surveillance , 2002, ECCV.

[7]  Takeo Kanade,et al.  Introduction to the Special Section on Video Surveillance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Mubarak Shah,et al.  Tracking across multiple cameras with disjoint views , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  David G. Stork,et al.  Pattern Classification , 1973 .

[10]  Yaser Sheikh,et al.  Visual monitoring of railroad grade crossing , 2004, SPIE Defense + Commercial Sensing.

[11]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).