Gelfand spectra in Grothendieck toposes using geometric mathematics

In the (covariant) topos approach to quantum theory by Heunen, Landsman and Spitters, one associates to each unital C*-algebra, A, a topos T(A) of sheaves on a locale and a commutative C*-algebra, a, within that topos. The Gelfand spectrum of a is a locale S in this topos, which is equivalent to a bundle over the base locale. We further develop this external presentation of the locale S, by noting that the construction of the Gelfand spectrum in a general topos can be described using geometric logic. As a consequence, the spectrum, seen as a bundle, is computed fibrewise. As a by-product of the geometricity of Gelfand spectra, we find an explicit external description of the spectrum whenever the topos is a functor category. As an intermediate result we show that locally perfect maps compose, so that the externalization of a locally compact locale in a topos of sheaves over a locally compact locale is locally compact, too.

[1]  Steven Vickers A monad of valuation locales , 2011 .

[2]  Andreas Doering,et al.  Generalised Gelfand Spectra of Nonabelian Unital C*-Algebras , 2012, 1212.2613.

[3]  Bas Spitters,et al.  Deep Beauty: Bohrification , 2011 .

[4]  T. Coquand About Stone's notion of spectrum , 2005 .

[5]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive Gelfand-Mazur theorem , 2000 .

[6]  T. Coquand,et al.  Constructive Gelfand duality for C*-algebras , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  Bas Spitters,et al.  A Topos for Algebraic Quantum Theory , 2007, 0709.4364.

[8]  Steven Vickers THE DOUBLE POWERLOCALE AND EXPONENTIATION: A CASE STUDY IN GEOMETRIC LOGIC , 2004 .

[9]  Martin Heidegger,et al.  What is a thing , 1967 .

[10]  C. J. Isham,et al.  A Topos Perspective on the Kochen-Specker Theorem II. Conceptual Aspects and Classical Analogues , 1998 .

[11]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[12]  Steven Vickers,et al.  The Born rule as structure of spectral bundles (extended abstract) , 2012 .

[13]  Bas Spitters,et al.  The Space of Measurement Outcomes as a Spectral Invariant for Non-Commutative Algebras , 2012 .

[14]  Andreas Doering,et al.  “What is a Thing?”: Topos Theory in the Foundations of Physics , 2008, 0803.0417.

[15]  J. Bell STONE SPACES (Cambridge Studies in Advanced Mathematics 3) , 1987 .

[16]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[17]  C. J. Isham,et al.  Topos Perspective on the Kochen=nSpeckerTheorem: III. Von Neumann Algebras as theBase Category , 1999 .

[18]  John Harding,et al.  Abelian subalgebras and the Jordan structure of a von Neumann algebra , 2010, 1009.4945.

[19]  Thierry Coquand,et al.  Integrals and valuations , 2008, J. Log. Anal..

[20]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[21]  Steven J. Vickers,et al.  A universal characterization of the double powerlocale , 2004, Theor. Comput. Sci..

[22]  Konstantinos Viglas Topos aspects of the extended Priestley duality , 2004 .

[23]  J. M. E. Hyland,et al.  Function spaces in the category of locales , 1981 .

[24]  Bas Spitters,et al.  Bohrification of operator algebras and quantum logic , 2009, Synthese.

[25]  R. Haag,et al.  Local quantum physics , 1992 .

[26]  P. Johnstone Sketches of an Elephant , 2007 .

[27]  Jan Hamhalter,et al.  Isomorphisms of ordered structures of abelian C⁎-subalgebras of C⁎-algebras , 2011 .

[28]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive spectrum , 2000 .

[29]  Bernhard Banaschewski,et al.  A globalisation of the Gelfand duality theorem , 2006, Ann. Pure Appl. Log..

[30]  Francis Borceux,et al.  A Handbook of Categorical Algebra 3: Categories of sheaves , 1994 .

[31]  Steven J. Vickers,et al.  Compactness in locales and in formal topology , 2006, Ann. Pure Appl. Log..

[32]  Steven J. Vickers,et al.  Partial Horn logic and cartesian categories , 2007, Ann. Pure Appl. Log..

[33]  Chris Heunen,et al.  Characterizations of Categories of Commutative C*-Subalgebras , 2011, 1106.5942.

[34]  Peter T. Johnstone,et al.  Open locales and exponentiation , 1984 .

[35]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[36]  Steven J. Vickers Information Systems for Continuous Posets , 1993, Theor. Comput. Sci..

[37]  Huzihiro Araki,et al.  Mathematical theory of quantum fields , 1999 .

[38]  J. Nuiten Bohrification of local nets of observables , 2011, 1109.1397.

[39]  Steven J. Vickers Locales and Toposes as Spaces , 2007, Handbook of Spatial Logics.

[40]  C. J. Isham,et al.  Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.

[41]  Sander Wolters,et al.  A Comparison of Two Topos-Theoretic Approaches to Quantum Theory , 2010, 1010.2031.

[42]  Steven J. Vickers Localic completion of generalized metric spaces II: Powerlocales , 2009, J. Log. Anal..

[43]  P. W. Ng,et al.  Completely positive maps into corona algebras , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[44]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[45]  Steven J. Vickers Entailment systems for stably locally compact locales , 2004, Theor. Comput. Sci..

[46]  B. Simon,et al.  Texts and Monographs in Physics , 1987 .

[47]  Andreas Doering,et al.  Flows on Generalised Gelfand Spectra of Nonabelian Unital C*-Algebras and Time Evolution of Quantum Systems , 2012, 1212.4882.

[48]  Steven J. Vickers,et al.  Continuity and geometric logic , 2014, J. Appl. Log..

[49]  C. J. Isham,et al.  Topos Perspective on the Kochen–Specker Theorem: IV. Interval Valuations , 2001 .

[50]  Steven Vickers,et al.  Localic completion of generalized metric spaces I , 2005 .

[51]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[52]  Bas Spitters,et al.  Intuitionistic Quantum Logic of an n-level System , 2009, Foundations of Physics.

[53]  P. Johnstone,et al.  REVIEWS-Sketches of an elephant: A topos theory compendium , 2003 .

[54]  Peter Aczel,et al.  Aspects of general topology in constructive set theory , 2006, Ann. Pure Appl. Log..

[55]  Ieke Moerdijk,et al.  Continuous fibrations and inverse limits of toposes , 1986 .

[56]  André Joyal,et al.  Continuous categories and exponentiable toposes , 1982 .

[57]  S. Vickers Continuity is Geometricity , 2011 .

[59]  J. Hamhalter,et al.  STRUCTURE OF ASSOCIATIVE SUBALGEBRAS OF JORDAN OPERATOR ALGEBRAS , 2011 .