Two-Round Multiparty Secure Computation Minimizing Public Key Operations

We show new constructions of semi-honest and malicious two-round multiparty secure computation protocols using only (a fixed) \(\mathsf {poly}(n,\lambda )\) invocations of a two-round oblivious transfer protocol (which use expensive public-key operations) and \(\mathsf {poly}(\lambda , |C|)\) cheaper one-way function calls, where \(\lambda \) is the security parameter, n is the number of parties, and C is the circuit being computed. All previously known two-round multiparty secure computation protocols required \(\mathsf {poly}(\lambda ,|C|)\) expensive public-key operations.

[1]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[2]  Rafail Ostrovsky,et al.  Round-Optimal Secure Two-Party Computation from Trapdoor Permutations , 2017, IACR Cryptol. ePrint Arch..

[3]  Sanjam Garg,et al.  Lower Bounds on Obfuscation from All-or-Nothing Encryption Primitives , 2017, CRYPTO.

[4]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[5]  Yuval Ishai,et al.  OT-Combiners via Secure Computation , 2008, TCC.

[6]  Sanjam Garg,et al.  On the Round Complexity of OT Extension , 2018, IACR Cryptol. ePrint Arch..

[7]  Yuval Ishai,et al.  Two-Message Witness Indistinguishability and Secure Computation in the Plain Model from New Assumptions , 2017, ASIACRYPT.

[8]  Ran Canetti,et al.  Universally Composable Commitments , 2001, CRYPTO.

[9]  Sanjam Garg,et al.  Two-round Multiparty Secure Computation from Minimal Assumptions , 2018, IACR Cryptol. ePrint Arch..

[10]  Yuval Ishai,et al.  Breaking the Circuit Size Barrier for Secure Computation Under DDH , 2016, CRYPTO.

[11]  Yuval Ishai,et al.  Extending Oblivious Transfers Efficiently , 2003, CRYPTO.

[12]  Yehuda Lindell,et al.  A Proof of Security of Yao’s Protocol for Two-Party Computation , 2009, Journal of Cryptology.

[13]  Ran Canetti,et al.  Universally composable signature, certification, and authentication , 2004, Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004..

[14]  Brent Waters,et al.  Witness encryption and its applications , 2013, STOC '13.

[15]  Chris Peikert,et al.  Multi-key FHE from LWE, Revisited , 2016, TCC.

[16]  Carmit Hazay,et al.  Round-Optimal Secure Multi-party Computation , 2018, Journal of Cryptology.

[17]  Ran Canetti,et al.  Universal Composition with Joint State , 2003, CRYPTO.

[18]  Silvio Micali,et al.  The Round Complexity of Secure Protocols (Extended Abstract) , 1990, STOC 1990.

[19]  Claudio Orlandi,et al.  A New Approach to Practical Active-Secure Two-Party Computation , 2012, IACR Cryptol. ePrint Arch..

[20]  Craig Gentry,et al.  Two-Round Secure MPC from Indistinguishability Obfuscation , 2014, TCC.

[21]  Ran Canetti,et al.  Security and Composition of Multiparty Cryptographic Protocols , 2000, Journal of Cryptology.

[22]  Donald Beaver,et al.  Correlated pseudorandomness and the complexity of private computations , 1996, STOC '96.

[23]  Rafail Ostrovsky,et al.  Adaptively Secure Garbled Circuits from One-Way Functions , 2016, CRYPTO.

[24]  Adi Shamir,et al.  Witness indistinguishable and witness hiding protocols , 1990, STOC '90.

[25]  Zvika Brakerski,et al.  Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts , 2016, CRYPTO.

[26]  Jesper Buus Nielsen,et al.  Extending Oblivious Transfers Efficiently - How to get Robustness Almost for Free , 2007, IACR Cryptol. ePrint Arch..

[27]  Ran Canetti,et al.  Adaptive Hardness and Composable Security in the Plain Model from Standard Assumptions , 2010, FOCS.

[28]  Yehuda Lindell,et al.  Secure Computation on the Web: Computing without Simultaneous Interaction , 2011, IACR Cryptol. ePrint Arch..

[29]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[30]  Daniel Wichs,et al.  Two Round Multiparty Computation via Multi-key FHE , 2016, EUROCRYPT.

[31]  Yuval Ishai,et al.  How Many Oblivious Transfers Are Needed for Secure Multiparty Computation? , 2007, CRYPTO.

[32]  Brent Waters,et al.  Encoding Functions with Constant Online Rate or How to Compress Garbled Circuits Keys , 2013, CRYPTO.

[33]  Fabrice Benhamouda,et al.  k-Round MPC from k-Round OT via Garbled Interactive Circuits , 2017, IACR Cryptol. ePrint Arch..

[34]  Yael Tauman Kalai,et al.  Promise Zero Knowledge and its Applications to Round Optimal MPC , 2018, IACR Cryptol. ePrint Arch..

[35]  Vladimir Kolesnikov,et al.  Improved OT Extension for Transferring Short Secrets , 2013, CRYPTO.

[36]  Daniel Wichs,et al.  Adaptive Security of Yao's Garbled Circuits , 2016, TCC.

[37]  Andrew Chi-Chih Yao,et al.  Protocols for Secure Computations (Extended Abstract) , 1982, FOCS.

[38]  Yehuda Lindell,et al.  More Efficient Oblivious Transfer Extensions , 2017, Journal of Cryptology.

[39]  Srinivasan Raghuraman,et al.  Network Oblivious Transfer , 2016, CRYPTO.

[40]  Yuval Ishai,et al.  Group-Based Secure Computation: Optimizing Rounds, Communication, and Computation , 2017, EUROCRYPT.

[41]  Sanjam Garg,et al.  The Exact Round Complexity of Secure Computation , 2016, EUROCRYPT.

[42]  Ilan Komargodski,et al.  Be Adaptive, Avoid Overcommitting , 2017, CRYPTO.

[43]  Shai Halevi,et al.  Four Round Secure Computation Without Setup , 2017, TCC.

[44]  Sanjam Garg,et al.  Garbled Protocols and Two-Round MPC from Bilinear Maps , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[45]  Silvio Micali,et al.  A Completeness Theorem for Protocols with Honest Majority , 1987, STOC 1987.

[46]  Elaine Shi,et al.  Constant-Round MPC with Fairness and Guarantee of Output Delivery , 2015, CRYPTO.

[47]  Yael Tauman Kalai,et al.  Distinguisher-Dependent Simulation in Two Rounds and its Applications , 2017, CRYPTO.

[48]  Arka Rai Choudhuri,et al.  A New Approach to Round-Optimal Secure Multiparty Computation , 2017, CRYPTO.

[49]  Silvio Micali,et al.  The round complexity of secure protocols , 1990, STOC '90.

[50]  Mihir Bellare,et al.  Foundations of garbled circuits , 2012, CCS.

[51]  Yehuda Lindell,et al.  Secure Computation Without Authentication , 2005, Journal of Cryptology.

[52]  Sanjam Garg,et al.  When Does Functional Encryption Imply Obfuscation? , 2017, TCC.

[53]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..