Frequency-dependent attenuation analysis of ground-penetrating radar data

In the early 1990s, it was established empirically that, in many materials, ground-penetrating radar (GPR) attenuation is approximately linear with frequency over the bandwidth of a typical pulse. Further, a frequency-independent Q* parameter characterizes the slope of the band-limited attenuation versus frequency curve. Here, I derive the band-limited Q* function from a first-order Taylor expansion of the attenuation coefficient. This approach provides a basis for computing Q* from any arbitrary dielectric permittivity model. For Cole-Cole relaxation, I find good correlation between the first-order Q* approximation and Q* computed from linear fits to the attenuation coefficient curve over two-octave bands. The correlation holds over the primary relaxation frequency. For some materials, this relaxation occurs between 10 and 200 MHz , a typical frequency range for many GPR applications. Frequency-dependent losses caused by scattering and by the commonly overlooked problem of frequency-dependent reflection ...

[1]  Gary R. Olhoeft,et al.  Laboratory measurements of the radiofrequency electrical and magnetic properties of soils from near Yuma, Arizona , 1993 .

[2]  A. Bitri,et al.  Evaluation of GPR techniques for civil-engineering applications: study on a test site , 2000 .

[3]  S. M. Gorelick,et al.  Attenuation-difference radar tomography: results of a multiplane experiment at the U.S. Geological Survey Fractured-Rock Research Site, Mirror Lake, New Hampshire , 2000, International Conference on Ground Penetrating Radar.

[4]  Youli Quan,et al.  Radar attenuation tomography using the centroid frequency downshift method , 1998 .

[5]  G. R. Olhoeft,et al.  Magnetic relaxation and the electromagnetic response parameter , 1974 .

[6]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[7]  Estella A. Atekwana,et al.  Investigations of geoelectrical signatures at a hydrocarbon contaminated site , 2000 .

[8]  Dispersion and Absorption in Dielectrics 1 , 2022 .

[9]  D. Griffiths Introduction to Electrodynamics , 2017 .

[10]  Greg Turner,et al.  Constant Q attenuation of subsurface radar pulses , 1994 .

[11]  George A. McMechan,et al.  2-D ray‐based tomography for velocity, layer shape, and attenuation from GPR data , 1999 .

[12]  Gary R. Olhoeft,et al.  Petrophysical causes of electromagnetic dispersion , 1994 .

[13]  John H. Bradford,et al.  Ground-penetrating radar theory and application of thin-bed offset-dependent reflectivity , 2006 .

[14]  W. P. Clement,et al.  Borehole Radar Attenuation-Difference Tomography During The Tracer/Time-Lapse Test At The Boise Hydrogeophysical Research Site , 2003 .

[15]  James Irving,et al.  Removal of Wavelet Dispersion from Ground-Penetrating Radar Data , 2003 .

[16]  Estella A. Atekwana,et al.  High Conductivities Associated With an LNAPL Plume Imaged by Integrated Geophysical Techniques , 1998 .

[17]  J. Morlet,et al.  Wave propagation and sampling theory—Part II: Sampling theory and complex waves , 1982 .

[18]  J. Morlet,et al.  Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media , 1982 .

[19]  Measuring Thaw Depth Beneath Peat-Lined Arctic Streams Using Ground-Penetrating Radar , 2005 .

[20]  A. P. Annan,et al.  Geophysical Monitoring Of A Controlled Kerosene Spill , 1993 .

[21]  Karl J. Ellefsen,et al.  Monitoring of a controlled LNAPL spill using ground-penetrating radar , 1996 .

[22]  Chaoguang Zhou,et al.  Nonlinear inversion of borehole-radar tomography data to reconstruct velocity and attenuation distribution in earth materials , 2001 .

[23]  Instantaneous Spectral Analysis: Time-Frequency Mapping Via Wavelet Matching With Application To 3D Gpr Contaminated Site Characterization , 2007 .

[24]  John H. Bradford FREQUENCY DEPENDENT ATTENUATION ANALYSIS OF GROUNDPENETRATING RADAR DATA , 2006 .

[25]  Greg Turner Subsurface radar propagation deconvolution , 1994 .

[26]  Allan J. Delaney,et al.  Dielectric properties of soils at UHF and microwave frequencies 36R. J. Geophys. Res. V79, N11, Apr. 1974, P1699–1708 , 1974 .

[27]  George A. McMechan,et al.  Synthesis of amplitude-versus-offset variations in ground-penetrating radar data , 2000 .

[28]  L. Orlando Detection and analysis of LNAPL using the instantaneous amplitude and frequency of ground‐penetrating radar data , 2002 .

[29]  D. Okaya,et al.  Frequency‐time decomposition of seismic data using wavelet‐based methods , 1995 .

[30]  J. J. Peterson Pre-inversion Corrections and Analysis of Radar Tomographic Data , 2001 .

[31]  Robin Newmark,et al.  Monitoring DNAPL Pumping Using Integrated Geophysical Techniques , 1998 .

[32]  W. Sauck A Conceptual Model For The Geoelectrical Response Of Lnapl Plumes In Granular Sediments , 1998 .

[33]  Youli Quan,et al.  Seismic attenuation tomography using the frequency shift method , 1997 .

[34]  A. Peter Annan,et al.  Ground‐penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar , 1994 .

[35]  M. Monier-Williams Properties Of Light Non-Aqueous Phase Liquids And Detection Using Commonly Applied Shallow Sensing Geophysical Techniques , 1995 .

[36]  I. Mason,et al.  Broadband synthetic aperture borehole radar interferometry , 2001 .

[37]  Frederick D. Day-Lewis,et al.  Time‐lapse inversion of crosswell radar data , 2002 .

[38]  Maksim Bano,et al.  Modelling of GPR waves for lossy media obeying a complex power law of frequency for dielectric permittivity , 2004 .

[39]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[40]  Multi‐scale attribute analysis and trace decomposition , 1996 .

[41]  E. I. Parkhomenko Electrical properties of rocks , 1967 .

[42]  J. D. Robertson,et al.  Complex seismic trace analysis of thin beds , 1984 .

[43]  M. Taherian,et al.  Measurement of dielectric response of water‐saturated rocks , 1990 .

[44]  Estella A. Atekwana,et al.  Geophysical Discovery of a New LNAPL Plume at the Former Wurtsmith AFB, Oscoda, Michigan , 1997 .

[45]  S. Goldstein BOREHOLE RADAR ATTENUATION-DIFFERENCE TOMOGRAPHY DURING THE TRACER / TIME-LAPSE TEST AT THE BOISE HYDROGEOPHYSICAL RESEARCH SITE , 2003 .

[46]  Jacob T. Fokkema,et al.  Decomposition of seismic signals via time-frequency representations , 1996 .

[47]  Frederick D. Day-Lewis,et al.  Time‐lapse imaging of saline‐tracer transport in fractured rock using difference‐attenuation radar tomography , 2003 .