Preference-Driven Multiobjective Optimization Using Robust Ordinal Regression for Cone Contraction
暂无分享,去创建一个
[1] A. Wierzbicki. On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .
[2] Ignacy Kaliszewski,et al. Quantitative Pareto Analysis by Cone Separation Technique , 1994 .
[3] Salvatore Greco,et al. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..
[4] Milosz Kadzinski,et al. Interactive Robust Cone Contraction Method for Multiple Objective Optimization Problems , 2012, Int. J. Inf. Technol. Decis. Mak..
[5] Francesca Guerriero,et al. The interactive analysis of the multicriteria shortest path problem by the reference point method , 2003, Eur. J. Oper. Res..
[6] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[7] Ralph E. Steuer. Vector-Maximum Gradient Cone Contraction Techniques , 1978 .
[8] Philippe Vincke,et al. Description and analysis of some representative interactive multicriteria procedures , 1989 .
[9] Włodzimierz Ogryczak,et al. On goal programming formulations of the reference point method , 2001, J. Oper. Res. Soc..
[10] A. Jaszkiewicz,et al. Cone contraction method with visual interaction for multiple-objective non-linear programmes , 1992 .
[11] Milosz Kadzinski,et al. ELECTREGKMS: Robust ordinal regression for outranking methods , 2011, Eur. J. Oper. Res..
[12] Ralph E. Steuer,et al. An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..
[13] Andrzej P. Wierzbicki,et al. Reference Point Approaches , 1999 .
[14] A. Wierzbicki. A Mathematical Basis for Satisficing Decision Making , 1982 .