Computational Screening of All Stoichiometric Inorganic Materials

Summary Forming a four-component compound from the first 103 elements of the periodic table results in more than 1012 combinations. Such a materials space is intractable to high-throughput experiment or first-principle computation. We introduce a framework to address this problem and quantify how many materials can exist. We apply principles of valency and electronegativity to filter chemically implausible compositions, which reduces the inorganic quaternary space to 1010 combinations. We demonstrate that estimates of band gaps and absolute electron energies can be made simply on the basis of the chemical composition and apply this to the search for new semiconducting materials to support the photoelectrochemical splitting of water. We show the applicability to predicting crystal structure by analogy with known compounds, including exploration of the phase space for ternary combinations that form a perovskite lattice. Computer screening reproduces known perovskite materials and predicts the feasibility of thousands more. Given the simplicity of the approach, large-scale searches can be performed on a single workstation.

[1]  Liping Yu,et al.  Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. , 2014, Nature chemistry.

[2]  Shengbai Zhang,et al.  Chalcogenide perovskites for photovoltaics. , 2015, Nano letters.

[3]  Ali Alavi,et al.  Towards an exact description of electronic wavefunctions in real solids , 2012, Nature.

[4]  P. Woodward Octahedral Tilting in Perovskites. I. Geometrical Considerations , 1997 .

[5]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[6]  J. C. Phillips Bonds and Bands in Semiconductors , 1970, Science.

[7]  K. Butler,et al.  Prediction of electron energies in metal oxides. , 2014, Accounts of chemical research.

[8]  B. Pamplin A systematic method of deriving new semiconducting compounds by structural analogy , 1964 .

[9]  J. Flahaut,et al.  Contributionàl'étude du système formépar l'étain, le soufre et l'iode. Mise enévidence des deux variétés de l'iodosulfure stanneux Sn2SI2: Comportement thermique etétude structurale , 1976 .

[10]  L. C. Allen,et al.  The definition of electronegativity and the chemistry of the noble gases , 1980 .

[11]  Kristian Sommer Thygesen,et al.  Stability and bandgaps of layered perovskites for one- and two-photon water splitting , 2013 .

[12]  Thomas F. Jaramillo,et al.  New cubic perovskites for one- and two-photon water splitting using the computational materials repository , 2012 .

[13]  Vladan Stevanović,et al.  Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. , 2014, Physical chemistry chemical physics : PCCP.

[14]  C. Goodman The prediction of semiconducting properties in inorganic compounds , 1958 .

[15]  D. Keszler,et al.  Atomic solid state energy scale: Universality and periodic trends in oxidation state , 2015 .

[16]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[17]  A. Rappe,et al.  Effect of substituting of S for O: The sulfide perovskite BaZrS 3 investigated with density functional theory , 2009 .

[18]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[19]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[20]  V. M. Goldschmidt,et al.  The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937 , 1937 .

[21]  Pierre Villars,et al.  The Structures of Binary Compounds , 1990 .

[22]  Jessica Schulze,et al.  The Nature Of The Chemical Bond , 2016 .

[23]  J. Burdett,et al.  Electronic structure and properties of solids , 1996 .

[24]  Wentong Chen,et al.  Solid-state syntheses, crystal structures and properties of two novel metal sulfur chlorides-Zn6S5Cl2 and Hg3ZnS2Cl4 , 2010 .

[25]  J. Harding,et al.  The meaning of the oxygen second-electron affinity and oxide potential models , 1995 .

[26]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[27]  K. Butler,et al.  Analysis of electrostatic stability and ordering in quaternary perovskite solid solutions , 2016 .

[28]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[29]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[30]  Christopher H. Hendon,et al.  Lone-Pair Stabilization in Transparent Amorphous Tin Oxides: A Potential Route to p-Type Conduction Pathways , 2016 .

[31]  David S. Ginley,et al.  Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities , 1978 .

[32]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[33]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[34]  John Arents,et al.  Atomic Structure Calculations , 1964 .

[35]  Christopher H. Hendon,et al.  Role of entropic effects in controlling the polymorphism in formate ABX3 metal-organic frameworks. , 2015, Chemical communications.

[36]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[37]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[38]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[39]  D. Pettifor,et al.  The structures of binary compounds. I. Phenomenological structure maps , 1986 .

[40]  A. Walsh,et al.  A photoactive titanate with a stereochemically active Sn lone pair: Electronic and crystal structure of Sn2TiO4 from computational chemistry , 2012 .

[41]  D. Ijdo,et al.  Sulphides with the GdFeO3 structure , 1980 .

[42]  J. Goodenough,et al.  Exploring the A+B5+O3 compounds , 1973 .

[43]  Chao Jiang,et al.  Efficient Ab initio Modeling of Random Multicomponent Alloys. , 2016, Physical review letters.

[44]  D. Vanderbilt,et al.  Hyperferroelectrics: proper ferroelectrics with persistent polarization. , 2013, Physical review letters.

[45]  Ralph G. Pearson,et al.  Absolute Electronegativity and Hardness: Application to Inorganic Chemistry , 1988 .

[46]  M. Nascimento,et al.  The nature of the chemical bond , 2008 .

[47]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[48]  P. B. Allen,et al.  Special quasiordered structures: Role of short-range order in the semiconductor alloy ( GaN ) 1 − x ( ZnO ) x , 2015, 1505.06329.

[49]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[50]  O. Madelung Semiconductors: Data Handbook , 2003 .

[51]  A. H. Nethercot Prediction of Fermi Energies and Photoelectric Thresholds Based on Electronegativity Concepts , 1974 .

[52]  K. Butler,et al.  Computational materials design of crystalline solids. , 2016, Chemical Society reviews.

[53]  D. Keszler,et al.  Atomic solid state energy scale. , 2011, Journal of the American Chemical Society.

[54]  S. Hayakawa,et al.  Formation, Microstructure, and Properties of Barium Zirconium Sulfide Ceramics , 1970 .

[55]  H. Hahn,et al.  Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten , 1957 .

[56]  Taylor D. Sparks,et al.  Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations , 2013 .

[57]  W. C. Lineberger,et al.  Binding energies in atomic negative ions , 1975 .

[58]  W. C. Lineberger,et al.  Binding Energies in Atomic Negative Ions : II , 2022 .