Low-temperature Bessel beam trap for single submicrometer aerosol particle studies.

We report on a new instrument for single aerosol particle studies at low temperatures that combines an optical trap consisting of two counter-propagating Bessel beams (CPBBs) and temperature control down to 223 K (-50 °C). The apparatus is capable of capturing and stably trapping individual submicrometer- to micrometer-sized aerosol particles for up to several hours. First results from studies of hexadecane, dodecane, and water aerosols reveal that we can trap and freeze supercooled droplets ranging in size from ~450 nm to 5500 nm (radius). We have conducted homogeneous and heterogeneous freezing experiments, freezing-melting cycles, and evaporation studies. To our knowledge, this is the first reported observation of the freezing process for levitated single submicrometer-sized droplets in air using optical trapping techniques. These results show that a temperature-controlled CPBB trap is an attractive new method for studying phase transitions of individual submicrometer aerosol particles.

[1]  R. Signorell,et al.  METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS , 2010 .

[2]  Andrew J Orr-Ewing,et al.  Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap. , 2014, Physical chemistry chemical physics : PCCP.

[3]  B. Swanson,et al.  Laboratory Measurements of Light Scattering by Single Levitated Ice Crystals. , 2000 .

[4]  Eckart Rühl,et al.  Homogeneous freezing nucleation rates and crystallization dynamics of single levitated sulfuric acid solution droplets , 2000 .

[5]  A. Frohn,et al.  Size and polarization behaviour of optically levitated frozen water droplets , 1998 .

[6]  T. Leisner,et al.  Nucleation Behavior of n-Alkane Microdroplets in an Electrodynamic Balance† , 2003 .

[7]  H. Pathak,et al.  Freezing water in no-man's land. , 2012, Physical chemistry chemical physics : PCCP.

[8]  Ulrich Pöschl,et al.  Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. , 2011, Physical chemistry chemical physics : PCCP.

[9]  Pavel Zemanek,et al.  Optical conveyor belt based on Bessel beams , 2005, SPIE Optics + Photonics.

[10]  U. Krieger,et al.  Supercooling of single H2SO4/H2O aerosols to 158 K: No evidence for the occurrence of the octrahydrate , 2000 .

[11]  B. Luo,et al.  Ultra-slow water diffusion in aqueous sucrose glasses. , 2011, Physical chemistry chemical physics : PCCP.

[12]  J. Pettersson,et al.  Freezing of water droplets colliding with kaolinite particles , 2009 .

[13]  A. Pluchino Scattering photometer for measuring single ice crystals and evaporation and condensation rates of liquid droplets , 1987 .

[14]  M D Summers,et al.  Optical guiding of aerosol droplets. , 2006, Optics express.

[15]  S. Rushworth,et al.  Measurements of the equilibrium size of supersaturated aqueous sodium chloride droplets at low relative humidity using aerosol optical tweezers and an electrodynamic balance. , 2010, The journal of physical chemistry. A.

[16]  R. Signorell,et al.  Phase behavior of propane and n-pentane aerosol particles under conditions relevant to Titan , 2013 .

[17]  Homogeneous ice nucleation observed in single levitated micro droplets , 1996 .

[18]  G. S. Parks,et al.  Vapor Pressure and Other Thermodynamic Data for n‐Hexadecane and n‐Dodecylcyclohexane near Room Temperature , 1949 .

[19]  T. Leisner,et al.  Rates of homogeneous ice nucleation in levitated H2O and D2O droplets. , 2005, The journal of physical chemistry. A.

[20]  Jonathan P Reid,et al.  Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis. , 2012, The journal of physical chemistry. A.

[21]  L. Bartell,et al.  Kinetics of Homogeneous Nucleation in the Freezing of Large Water Clusters , 1995 .

[22]  Chris D. Boone,et al.  Properties of high‐altitude tropical cirrus clouds determined from ACE FTS observations , 2005 .

[23]  P. Bennema,et al.  On the morphology of crystals of triclinic even normal alkanes: theory and observation , 1994 .

[24]  T. Leisner,et al.  The index of refraction of supercooled solutions determined by the analysis of optical rainbow scattering from levitated droplets , 2004 .

[25]  T. Leisner,et al.  Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: quantitative size and temperature dependence for illite particles. , 2013, Faraday discussions.

[26]  Andrew J Orr-Ewing,et al.  Selection and characterization of aerosol particle size using a bessel beam optical trap for single particle analysis. , 2012, Physical chemistry chemical physics : PCCP.

[27]  R. Signorell,et al.  Infrared spectroscopy and phase behavior of n-butane aerosols and thin films at cryogenic temperatures. , 2013, The journal of physical chemistry. A.

[28]  Jonathan P. Reid,et al.  Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature , 2011 .

[29]  J. Reid,et al.  Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap. , 2009, Physical chemistry chemical physics : PCCP.

[30]  Maki Tachikawa,et al.  Laser trapping of ice crystals , 2006 .

[31]  R. Signorell,et al.  Volume versus surface nucleation in freezing aerosols. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  E. Ruckenstein,et al.  Thermodynamics of heterogeneous crystal nucleation in contact and immersion modes. , 2008, The journal of physical chemistry. A.

[33]  Yuanhang Zhang,et al.  Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry , 2011 .

[34]  Azusa Muraoka,et al.  Raman spectroscopy of optically levitated supercooled water droplet. , 2012, The Journal of chemical physics.

[35]  E. J. Davis Electrodynamic balance stability characteristics and applications to the study of aerocolloidal particles , 1985 .

[36]  R. Zellner,et al.  Freezing nucleation of levitated single sulfuric acid/H2O micro-droplets. A combined Raman- and Mie spectroscopic study , 2003 .

[37]  P. Zemánek,et al.  Long-range one-dimensional longitudinal optical binding. , 2008, Physical review letters.

[38]  H. Stanley,et al.  The relationship between liquid, supercooled and glassy water , 1998, Nature.

[39]  E. Murray,et al.  Kinetics of the homogeneous freezing of water. , 2010, Physical chemistry chemical physics : PCCP.

[40]  R. Signorell,et al.  Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere. , 2008, Physical chemistry chemical physics : PCCP.

[41]  R. Signorell,et al.  The influence of methane, acetylene and carbon dioxide on the crystallization of supercooled ethane droplets in Titan's clouds , 2011 .

[42]  Ruth Signorell,et al.  Timescales of water transport in viscous aerosol: measurements on sub-micron particles and dependence on conditioning history. , 2014, Physical chemistry chemical physics : PCCP.

[43]  C. Mund,et al.  Raman- and Mie-spectroscopic studies of the cooling behaviour of levitated, single sulfuric acid/H2O microdroplets. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  S. J. Singer,et al.  Experimental evidence for surface freezing in supercooled n-alkane nanodroplets. , 2013, Physical chemistry chemical physics : PCCP.

[45]  Mian Chin,et al.  Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing , 2003 .

[46]  V. Molinero,et al.  Ice crystallization in water's "no-man's land". , 2010, The Journal of chemical physics.

[47]  E. Davis,et al.  Single aerosol particle size and mass measurements using an electrodynamic balance , 1980 .

[48]  G. Galli,et al.  Ice nucleation at the nanoscale probes no man’s land of water , 2013, Nature Communications.

[49]  Sirota,et al.  Transient phase-induced nucleation , 1999, Science.

[50]  R. Signorell,et al.  Predicting the infrared band profiles for CO2 cloud particles on Mars , 2013 .

[51]  A. Frohn,et al.  New technique for investigating phase transition processes of optically levitated droplets consisting of water , 1996 .

[52]  K. Carleton,et al.  Freezing behavior of single sulfuric acid aerosols suspended in a quadrupole trap , 1997 .

[53]  Noboru Kitamura,et al.  In situ observations of freezing processes of single micrometer-sized aqueous ammonium sulfate droplets in air , 2011 .

[54]  D. Duft,et al.  Laboratory evidence for volume-dominated nucleation of ice in supercooled water microdroplets , 2004 .

[55]  R. Zellner,et al.  Optical levitation of single microdroplets at temperatures down to 180 K. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  T. Leisner,et al.  Homogeneous nucleation rates of supercooled water measured in single levitated microdroplets , 1999 .

[57]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[58]  S. Atreya,et al.  Evidence for layered methane clouds in Titan’s troposphere , 2010 .

[59]  William L. Woodley,et al.  Deep convective clouds with sustained supercooled liquid water down to -37.5 °C , 2000, Nature.

[60]  H. Baumgärtel,et al.  Homogeneous nucleation of supercooled liquid water in levitated microdroplets , 2002 .

[61]  Jonathan P. Reid,et al.  Probing the bulk viscosity of particles using aerosol optical tweezers , 2012, NanoScience + Engineering.

[62]  Pavel Zemanek,et al.  Optical trapping in counter-propagating Bessel beams , 2004, SPIE Optics + Photonics.

[63]  Jonathan P Reid,et al.  Comparing the mechanism of water condensation and evaporation in glassy aerosol , 2012, Proceedings of the National Academy of Sciences.

[64]  Tomáš Čižmár,et al.  Sub-micron particle organization by self-imaging of non-diffracting beams , 2006 .

[65]  Thomas C. Preston,et al.  Dynamics of submicron aerosol droplets in a robust optical trap formed by multiple Bessel beams , 2014 .

[66]  Arthur Ashkin,et al.  Optical Levitation by Radiation Pressure , 1971 .

[67]  R. C. Millard,et al.  An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength , 1990 .

[68]  S. Borrmann,et al.  Heterogeneous freezing of single sulfuric acid solution droplets: laboratory experiments utilizing an acoustic levitator , 2004 .

[69]  H. R. Pruppacher,et al.  A New Look at Homogeneous Ice Nucleation in Supercooled Water Drops , 1995 .

[70]  D. Jacob,et al.  Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions , 2007 .

[71]  K. Diehl,et al.  Homogeneous freezing of single sulfuric and nitric acid solution drops levitated in an acoustic trap , 2009 .

[72]  P. Louie,et al.  Physical and chemical characterization of ambient aerosol by HR‐ToF‐AMS at a suburban site in Hong Kong during springtime 2011 , 2013 .

[73]  C. Angell,et al.  Supercooling of Water to -92�C Under Pressure , 1975, Science.