Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems.

Machine learning, the core of artificial intelligence and big data science, is one of today's most rapidly growing interdisciplinary fields. Recently, machine learning tools and techniques have been adopted to tackle intricate quantum many-body problems. In this Letter, we introduce machine learning techniques to the detection of quantum nonlocality in many-body systems, with a focus on the restricted-Boltzmann-machine (RBM) architecture. Using reinforcement learning, we demonstrate that RBM is capable of finding the maximum quantum violations of multipartite Bell inequalities with given measurement settings. Our results build a novel bridge between computer-science-based machine learning and quantum many-body nonlocality, which will benefit future studies in both areas.

[1]  Yaoyun Shi,et al.  Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices , 2014, STOC.

[2]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[3]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[4]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[5]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[6]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[7]  J. Chen,et al.  Equivalence of restricted Boltzmann machines and tensor network states , 2017, 1701.04831.

[8]  Yichen Huang,et al.  Neural Network Representation of Tensor Network and Chiral States. , 2017, Physical review letters.

[9]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[10]  Andrew S. Darmawan,et al.  Restricted Boltzmann machine learning for solving strongly correlated quantum systems , 2017, 1709.06475.

[11]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[12]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[13]  Jean-Daniel Bancal,et al.  Bell correlations in a Bose-Einstein condensate , 2016, Science.

[14]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[15]  Umesh Vazirani,et al.  Fully device-independent quantum key distribution. , 2012, 1210.1810.

[16]  A. Zeilinger,et al.  Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. , 2015, Physical review letters.

[17]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[18]  Juan Carrasquilla,et al.  Machine learning quantum phases of matter beyond the fermion sign problem , 2016, Scientific Reports.

[19]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2017, Nature Physics.

[20]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[21]  Shellee D. Dyer,et al.  A strong loophole-free test of local realism , 2015 .

[22]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[23]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[24]  Dong-Ling Deng,et al.  Machine Learning Topological States , 2016, 1609.09060.

[25]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[26]  Yoshua Bengio,et al.  Classification using discriminative restricted Boltzmann machines , 2008, ICML '08.

[27]  Wenjian Hu,et al.  Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination. , 2017, Physical review. E.

[28]  M. Lewenstein,et al.  Detecting nonlocality in many-body quantum states , 2014, Science.

[29]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[30]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[31]  C. Klempt,et al.  Nonlocality in many-body quantum systems detected with two-body correlators , 2015, 1505.06740.

[32]  Erik Lucero,et al.  Violation of Bell's inequality in Josephson phase qubits , 2009, Nature.

[33]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[34]  M. Pasquato,et al.  Detecting intermediate mass black holes in globular clusters with machine learning , 2016, 1606.08548.

[35]  Claude Klöckl,et al.  The density matrix renormalization group on tensor networks , 2013 .

[36]  Nicolas Le Roux,et al.  Representational Power of Restricted Boltzmann Machines and Deep Belief Networks , 2008, Neural Computation.

[37]  Vladimir I. Arnold,et al.  Seventeen Papers on Analysis , 1963 .

[38]  John J. Oh,et al.  Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data , 2013, 1303.6984.

[39]  M. Heyl,et al.  Quantum dynamics in transverse-field Ising models from classical networks , 2017, 1707.06656.

[40]  M. Lewenstein,et al.  Detecting non-locality in multipartite quantum systems with two-body correlation functions , 2013, 1306.6860.

[41]  R. S-A. Gatsaeva,et al.  On the representation of continuous functions of several variables as superpositions of continuous functions of one variable and addition , 2018 .

[42]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[43]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[44]  C. H. Raymond Ooi,et al.  Computing the maximum violation of a Bell inequality is an NP-problem , 2016, Quantum Information Processing.

[45]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[46]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[47]  J. Ignacio Cirac,et al.  Energy as a Detector of Nonlocality of Many-Body Spin Systems , 2016, 1607.06090.

[48]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[49]  Dong-Ling Deng,et al.  Fault Tolerant Quantum Random Number Generator Certified by Majorana Fermions , 2013, 1303.6365.

[50]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[51]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[52]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[54]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[55]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[56]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[57]  Carsten Lund,et al.  Non-deterministic exponential time has two-prover interactive protocols , 2005, computational complexity.

[58]  Peter Wittek,et al.  Efficient Device-Independent Entanglement Detection for Multipartite Systems , 2016, 1612.08551.

[59]  F. Verstraete,et al.  Monogamy of Bell correlations and Tsirelson's bound , 2006, quant-ph/0611001.

[60]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[61]  Zizhu Wang,et al.  Entanglement and Nonlocality in Infinite 1D Systems. , 2016, Physical review letters.

[62]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[63]  A. Yacoby,et al.  Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit. , 2012, Physical review letters.

[64]  Titus Neupert,et al.  Probing many-body localization with neural networks , 2017, 1704.01578.

[65]  Jean-Daniel Bancal,et al.  Bell Correlations in a Many-Body System with Finite Statistics. , 2017, Physical review letters.

[66]  Yi Zhang,et al.  Publisher's Note: Machine learning Z 2 quantum spin liquids with quasiparticle statistics [Phys. Rev. B 96, 245119 (2017)] , 2018 .

[67]  Christian Kurtsiefer,et al.  Experimental observation of four-photon entanglement from parametric down-conversion. , 2003, Physical review letters.

[68]  W Dür,et al.  Experimental violation of multipartite Bell inequalities with trapped ions. , 2013, Physical review letters.

[69]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[70]  Richard Moulds,et al.  Quantum Random Number Generators , 2016 .

[71]  Nobuyuki Yoshioka,et al.  Learning disordered topological phases by statistical recovery of symmetry , 2017, 1709.05790.

[72]  Matison,et al.  Experimental Test of Local Hidden-Variable Theories , 1972 .

[73]  Saito Hiroki,et al.  Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice , 2018 .

[74]  H. Weinfurter,et al.  Heralded Entanglement Between Widely Separated Atoms , 2012, Science.

[75]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[76]  Li Huang,et al.  Accelerated Monte Carlo simulations with restricted Boltzmann machines , 2016, 1610.02746.

[77]  Dong-Ling Deng,et al.  Exact Machine Learning Topological States , 2016 .

[78]  A Acín,et al.  Entanglement and Nonlocality are Inequivalent for Any Number of Parties. , 2014, Physical review letters.

[79]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[80]  M. Markham,et al.  Demonstration of entanglement-by-measurement of solid-state qubits , 2012, Nature Physics.

[81]  H. Saito Solving the Bose–Hubbard Model with Machine Learning , 2017, 1707.09723.

[82]  R. Melko,et al.  Machine Learning Phases of Strongly Correlated Fermions , 2016, Physical Review X.

[83]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[84]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[85]  Simon Trebst,et al.  Quantum phase recognition via unsupervised machine learning , 2017, 1707.00663.

[86]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[87]  Yi Zhang,et al.  Quantum Loop Topography for Machine Learning. , 2016, Physical review letters.

[88]  Jinguo Liu,et al.  Approximating quantum many-body wave functions using artificial neural networks , 2017, 1704.05148.

[89]  Marek Zukowski,et al.  Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. , 2003, Physical review letters.

[90]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[91]  Stefano Pironio,et al.  Security of practical private randomness generation , 2011, 1111.6056.

[92]  Laurence Perreault Levasseur,et al.  Fast automated analysis of strong gravitational lenses with convolutional neural networks , 2017, Nature.

[93]  H Bluhm,et al.  Noise spectroscopy using correlations of single-shot qubit readout. , 2013, Physical review letters.

[94]  Yang Qi,et al.  Self-learning Monte Carlo method , 2016, 1610.03137.

[95]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[96]  Zhao Yang,et al.  Machine Learning Spatial Geometry from Entanglement Features , 2017, 1709.01223.

[97]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[98]  D. Deng,et al.  Experimental distillation of quantum nonlocality. , 2013, Physical review letters.

[99]  Hiroki Saito,et al.  Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice , 2017, 1709.05468.

[100]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[101]  Andrea J. Liu,et al.  A structural approach to relaxation in glassy liquids , 2015, Nature Physics.

[102]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[103]  Sergei V. Kalinin,et al.  Big-deep-smart data in imaging for guiding materials design. , 2015, Nature materials.

[104]  Yi Zhang,et al.  Machine learning Z 2 quantum spin liquids with quasiparticle statistics , 2017, 1705.01947.

[105]  J. Barrett Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.

[106]  A. Gossard,et al.  Scaling of dynamical decoupling for spin qubits. , 2011, Physical review letters.

[107]  O. Anatole von Lilienfeld,et al.  Machine learning for many-body physics: efficient solution of dynamical mean-field theory , 2015 .

[108]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[109]  K. Aoki,et al.  Restricted Boltzmann machines for the long range Ising models , 2016, 1701.00246.

[110]  L. Masanes Extremal quantum correlations for N parties with two dichotomic observables per site , 2005, quant-ph/0512100.