A first-generation linkage disequilibrium map of human chromosome 22

[1]  M. Kieny,et al.  Proximo-distal pattern regulation in deficient avian limb buds , 1977, Wilhelm Roux's archives of developmental biology.

[2]  G. Martin,et al.  Functions of FGF signalling from the apical ectodermal ridge in limb development , 2002, Nature.

[3]  G. Abecasis,et al.  Merlin—rapid analysis of dense genetic maps using sparse gene flow trees , 2002, Nature Genetics.

[4]  S. P. Fodor,et al.  Blocks of Limited Haplotype Diversity Revealed by High-Resolution Scanning of Human Chromosome 21 , 2001, Science.

[5]  I. Eisenbarth,et al.  Long-range sequence composition mirrors linkage disequilibrium pattern in a 1.13 Mb region of human chromosome 22. , 2001, Human molecular genetics.

[6]  A. Jeffreys,et al.  Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex , 2001, Nature Genetics.

[7]  M. Daly,et al.  High-resolution haplotype structure in the human genome , 2001, Nature Genetics.

[8]  Lon R. Cardon,et al.  GRR: graphical representation of relationship errors , 2001, Bioinform..

[9]  T. Petes,et al.  Meiotic recombination hot spots and cold spots , 2001, Nature Reviews Genetics.

[10]  Pardis C Sabeti,et al.  Linkage disequilibrium in the human genome , 2001, Nature.

[11]  M. Daly,et al.  A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms , 2001, Nature.

[12]  P. Deloukas,et al.  Comparison of human genetic and sequence-based physical maps , 2001, Nature.

[13]  P Sham,et al.  A SNP resource for human chromosome 22: extracting dense clusters of SNPs from the genomic sequence. , 2001, Genome research.

[14]  L R Cardon,et al.  Extent and distribution of linkage disequilibrium in three genomic regions. , 2001, American journal of human genetics.

[15]  M. Nachman,et al.  Microsatellite variation and recombination rate in the human genome. , 2000, Genetics.

[16]  Joseph B. Rayman,et al.  The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. , 2000, American journal of human genetics.

[17]  G. D. Wilson,et al.  An SNP map of human chromosome 22 , 2000, Nature.

[18]  John A. Todd,et al.  The genetically isolated populations of Finland and Sardinia may not be a panacea for linkage disequilibrium mapping of common disease genes , 2000, Nature Genetics.

[19]  Pui-Yan Kwok,et al.  Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28 , 2000, Nature Genetics.

[20]  J. Todd,et al.  Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. , 2000, Genome research.

[21]  M. Piedra,et al.  Pattern formation and regulation of gene expressions in chick recombinant limbs , 2000, Mechanisms of Development.

[22]  Gonçalo R. Abecasis,et al.  GOLD-Graphical Overview of Linkage Disequilibrium , 2000, Bioinform..

[23]  A. Metspalu,et al.  Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. , 2000, Genetic testing.

[24]  Melanie E. Goward,et al.  The DNA sequence of human chromosome 22 , 1999, Nature.

[25]  M. Carrington,et al.  A scan for linkage disequilibrium across the human genome. , 1999, Genetics.

[26]  L. Kruglyak Prospects for whole-genome linkage disequilibrium mapping of common disease genes , 1999, Nature Genetics.

[27]  C. Tabin,et al.  Targeted gene misexpression in chick limb buds using avian replication-competent retroviruses. , 1998, Methods.

[28]  L Wolpert,et al.  Cell fate in the chick limb bud and relationship to gene expression. , 1997, Development.

[29]  B. Weir Genetic Data Analysis II. , 1997 .

[30]  W. G. Hill,et al.  Genetic Data Analysis II . By Bruce S. Weir, Sunderland, Massachusetts. Sinauer Associates, Inc.445 pages. ISBN 0-87893-902-4. , 1996 .

[31]  L. Silver,et al.  Expression of the T‐box family genes, Tbx1–Tbx5, during early mouse development , 1996, Developmental dynamics : an official publication of the American Association of Anatomists.

[32]  V. Papaioannou,et al.  Evidence of a role for T-☐ genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb identity , 1996, Mechanisms of Development.

[33]  L. Wolpert,et al.  Gene expression, polarising activity and skeletal patterning in reaggregated hind limb mesenchyme. , 1995, Development.

[34]  H. Iba,et al.  Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds. , 1995, Genes & development.

[35]  G. Lyons,et al.  Recombinant limbs as a model to study homeobox gene regulation during limb development. , 1994, Developmental biology.

[36]  B. Olwin,et al.  FGF-2: apical ectodermal ridge growth signal for chick limb development. , 1994, Science.

[37]  D. Housman,et al.  Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12-q13.1: Part 1. , 1994, American journal of medical genetics.

[38]  C. Tickle,et al.  FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb , 1993, Cell.

[39]  H. Ide,et al.  Cell Sorting and Chondrogenic Aggregate Formation in Limb Bud Recombinants and in Culture , 1993 .

[40]  S. Ben‐Sasson,et al.  Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation , 1992, The Journal of cell biology.

[41]  G. Gyapay,et al.  A second-generation linkage map of the human genome , 1992, Nature.

[42]  S. Karlin,et al.  Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Thompson,et al.  The detection of linkage disequilibrium between closely linked markers: RFLPs at the AI-CIII apolipoprotein genes. , 1988, American journal of human genetics.

[44]  J. Fallon,et al.  Spatial and temporal patterns of cell death in limb bud mesoderm after apical ectodermal ridge removal. , 1982, Developmental biology.

[45]  J. Frederick,et al.  The proportion and distribution of polarizing zone cells causing morphogenetic inhibition when coaggregated with anterior half wing mesoderm in recombinant limbs , 1982 .

[46]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[47]  L. Wolpert,et al.  The effect of cell killing by x-irradiation on pattern formation in the chick limb. , 1979, Journal of embryology and experimental morphology.

[48]  J. Fallon,et al.  Inhibitory effect on limb morphogenesis by cells of the polarizing zone coaggregated with pre- or postaxial wing bud mesoderm. , 1975, Developmental biology.

[49]  J H Lewis,et al.  Fate maps and the pattern of cell division: a calculation for the chick wing-bud. , 1975, Journal of embryology and experimental morphology.

[50]  W. G. Hill,et al.  Estimation of linkage disequilibrium in randomly mating populations , 1974, Heredity.

[51]  D. SUMMERBELL,et al.  Positional Information in Chick Limb Morphogenesis , 1973, Nature.

[52]  J. W. Saunders,et al.  Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. , 1972, Developmental biology.

[53]  L. Wolpert,et al.  Cell Division in the Early Growth and Morphogenesis of the Chick Limb , 1970, Nature.

[54]  Viktor Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1992, Journal of morphology.

[55]  J. W. Saunders The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. , 1948, The Journal of experimental zoology.