Adaptive multi-scale parameterization for one-dimensional flow in unsaturated porous media

In the analysis of the unsaturated zone, one of the most challenging problems is to use inverse theory in the search for an optimal parameterization of the porous media. Adaptative multi-scale parameterization consists in solving the problem through successive approximations by refining the parameter at the next finer scale all over the domain and stopping the process when the refinement does not induce significant decrease of the objective function any more. In this context, the refinement indicators algorithm provides an adaptive parameterization technique that opens the degrees of freedom in an iterative way driven at first order by the model to locate the discontinuities of the sought parameters. We present a refinement indicators algorithm for adaptive multi-scale parameterization that is applicable to the estimation of multi-dimensional hydraulic parameters in unsaturated soil water flow. Numerical examples are presented which show the efficiency of the algorithm in case of noisy data and missing data.

[1]  I. Berre,et al.  A level-set corrector to an adaptive multiscale permeability prediction , 2007 .

[2]  Karsten Pruess,et al.  Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media , 1995 .

[3]  Trond Mannseth,et al.  Adaptive Multiscale Permeability Estimation , 2003 .

[4]  Guy Chavent,et al.  Indicator for the refinement of parameterization , 1998 .

[5]  Peter Droogers,et al.  Inverse Method for Determining Soil Hydraulic Functions from One‐Step Outflow Experiments , 1992 .

[6]  C. Voss,et al.  Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem , 2006 .

[7]  W. G. Gray,et al.  Computational methods in water resources X , 1994 .

[8]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[9]  Trond Mannseth,et al.  Combined Adaptive Multiscale and Level-Set Parameter Estimation , 2005, Multiscale Model. Simul..

[10]  M. Th. van Genuchten,et al.  Parameter estimation for unsaturated flow and transport models — A review , 1987 .

[11]  Mohamed Hayek,et al.  An Adaptive Subdivision Algorithm for the Identification of the Diffusion Coefficient in Two-dimensional Elliptic Problems , 2007, J. Math. Model. Algorithms.

[12]  Philippe Ackerer,et al.  Determining Soil Hydraulic Properties by Inverse Method in One-Dimensional Unsaturated Flow , 1997 .

[13]  R. Carsel,et al.  Developing joint probability distributions of soil water retention characteristics , 1988 .

[14]  Jack C. Parker,et al.  Parameter estimation for coupled unsaturated flow and transport , 1989 .

[15]  Jérôme Jaffré,et al.  Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities , 2002 .

[16]  Anderson L. Ward,et al.  Estimating Soil Hydraulic Parameters of a Field Drainage Experiment Using Inverse Techniques , 2003 .

[17]  Expériences de drainage et estimation de paramètres en milieu poreux non saturé , 2006 .

[18]  Matthew W. Farthing,et al.  A spatially and temporally adaptive solution of Richards’ equation , 2006 .

[19]  G. Nützmann,et al.  Inverse modelling techniques for determining hydraulic properties of coarse-textured porous media by transient outflow methods , 1998 .

[20]  W. G. Gray,et al.  Finite Element Simulation in Surface and Subsurface Hydrology , 1977 .

[21]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[22]  M. Burger A level set method for inverse problems , 2001 .

[23]  N. Sun Inverse problems in groundwater modeling , 1994 .

[24]  Peter Droogers,et al.  Inverse method to determine soil hydraulic functions from multistep outflow experiments. , 1994 .

[25]  Jun Liu A Multiresolution Method for Distributed Parameter Estimation , 1993, SIAM J. Sci. Comput..

[26]  K. Abbaspour,et al.  A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters , 1997 .

[27]  Hubert Maigre,et al.  Inverse Problems in Engineering Mechanics , 1994 .

[28]  G. Chavent Identification of functional parameters in partial differential equations , 1974 .

[29]  Dmitry Eydinov,et al.  A multiscale method for distributed parameter estimation with application to reservoir history matching , 2006 .

[30]  Pierre Perrochet,et al.  On the primary variable switching technique for simulating unsaturated–saturated flows , 1999 .

[31]  Matthew W. Farthing,et al.  Adaptive local discontinuous Galerkin approximation to Richards’ equation , 2007 .

[32]  Bruce A. Robinson,et al.  Parameter identification using the level set method , 2006 .

[33]  Mitsuhiro Inoue,et al.  Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments , 2000 .

[34]  T. Chan,et al.  Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients , 2004 .

[35]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[36]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[37]  M. T. van Genuchten,et al.  Estimating Unsaturated Soil Hydraulic Properties from Tension Disc Infiltrometer Data by Numerical Inversion , 1996 .

[38]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[39]  François Lehmann,et al.  Comparison of Iterative Methods for Improved Solutions of the Fluid Flow Equation in Partially Saturated Porous Media , 1998 .

[40]  M Rubel,et al.  Theory of stratigraphic correlation by means of ordinal scales , 1984 .

[41]  G. Marsily,et al.  An Automatic Solution for the Inverse Problem , 1971 .

[42]  J. Parker,et al.  Analysis of the inverse problem for transient unsaturated flow , 1988 .