DNA-Assembled Advanced Plasmonic Architectures.

The interaction between light and matter can be controlled efficiently by structuring materials at a length scale shorter than the wavelength of interest. With the goal to build optical devices that operate at the nanoscale, plasmonics has established itself as a discipline, where near-field effects of electromagnetic waves created in the vicinity of metallic surfaces can give rise to a variety of novel phenomena and fascinating applications. As research on plasmonics has emerged from the optics and solid-state communities, most laboratories employ top-down lithography to implement their nanophotonic designs. In this review, we discuss the recent, successful efforts of employing self-assembled DNA nanostructures as scaffolds for creating advanced plasmonic architectures. DNA self-assembly exploits the base-pairing specificity of nucleic acid sequences and allows for the nanometer-precise organization of organic molecules but also for the arrangement of inorganic particles in space. Bottom-up self-assembly thus bypasses many of the limitations of conventional fabrication methods. As a consequence, powerful tools such as DNA origami have pushed the boundaries of nanophotonics and new ways of thinking about plasmonic designs are on the rise.

[1]  Weihai Ni,et al.  Strong Chiroptical Activities in Gold Nanorod Dimers Assembled Using DNA Origami Templates , 2015 .

[2]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[3]  Yeechi Chen,et al.  Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. , 2010, Journal of the American Chemical Society.

[4]  Casey Grun,et al.  Programmable self-assembly of three-dimensional nanostructures from 104 unique components , 2017, Nature.

[5]  Adam T Woolley,et al.  Polymerase chain reaction based scaffold preparation for the production of thin, branched DNA origami nanostructures of arbitrary sizes. , 2009, Nano letters.

[6]  C. Mirkin,et al.  Asymmetric Functionalization of Nanoparticles Based on Thermally Addressable DNA Interconnects , 2006 .

[7]  Hendrik Dietz,et al.  Biotechnological mass production of DNA origami , 2017, Nature.

[8]  A Paul Alivisatos,et al.  Discrete nanostructures of quantum dots/Au with DNA. , 2004, Journal of the American Chemical Society.

[9]  Federico Capasso,et al.  Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. , 2010, Nano letters.

[10]  N. Seeman,et al.  DNA Patchy Particles , 2013, Advanced materials.

[11]  P. Tinnefeld,et al.  Shifting molecular localization by plasmonic coupling in a single-molecule mirage , 2017, Nature Communications.

[12]  Yung Doug Suh,et al.  Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. , 2014, Journal of the American Chemical Society.

[13]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[14]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[15]  J. Nam,et al.  Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. , 2014, Nano letters.

[16]  Baoquan Ding,et al.  Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. , 2012, Journal of the American Chemical Society.

[17]  Adrian Keller,et al.  DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering , 2013 .

[18]  Luvena L. Ong,et al.  DNA Brick Crystals with Prescribed Depth , 2014, Nature chemistry.

[19]  Nataša Jonoska,et al.  Computing by molecular self-assembly , 2012, Interface Focus.

[20]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[21]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[22]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[23]  Kensuke Kobayashi,et al.  Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer. , 2002, Physical review letters.

[24]  Jejoong Yoo,et al.  De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation , 2016, Nucleic acids research.

[25]  Jiecai Han,et al.  Past Achievements and Future Challenges in the Development of Infrared Antireflective and Protective Coatings , 2020, physica status solidi (a).

[26]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[27]  De‐Yin Wu,et al.  Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials , 2016 .

[28]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[29]  Hao Yan,et al.  DNA directed self-assembly of anisotropic plasmonic nanostructures. , 2011, Journal of the American Chemical Society.

[30]  Tim Liedl,et al.  Reconfigurable 3 D plasmonic metamolecules , 2014 .

[31]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[32]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[33]  Luke P. Lee,et al.  Remote optical switch for localized and selective control of gene interference. , 2009, Nano letters.

[34]  Ignacy Gryczynski,et al.  Metal-enhanced fluorescence: an emerging tool in biotechnology. , 2005, Current opinion in biotechnology.

[35]  Friedrich C Simmel,et al.  Periodic DNA nanotemplates synthesized by rolling circle amplification. , 2005, Nano letters.

[36]  A Paul Alivisatos,et al.  DNA-Based Assembly of Gold Nanocrystals. , 1999, Angewandte Chemie.

[37]  R. Ruppin,et al.  Decay of an excited molecule near a small metal sphere , 1982 .

[38]  P. Selvin Fluorescence resonance energy transfer. , 1995, Methods in enzymology.

[39]  A. Turberfield,et al.  DNA nanomachines. , 2007, Nature nanotechnology.

[40]  Weihai Ni,et al.  Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. , 2013, Journal of the American Chemical Society.

[41]  Tim Liedl,et al.  Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. , 2014, Nano letters.

[42]  Philip Tinnefeld,et al.  Controlled reduction of photobleaching in DNA origami-gold nanoparticle hybrids. , 2014, Nano letters.

[43]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[44]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[45]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[46]  A. Alivisatos,et al.  Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules. , 2015, Nano letters.

[47]  Na Liu,et al.  A plasmonic nanorod that walks on DNA origami , 2015, Nature Communications.

[48]  Hendrik Dietz,et al.  Exploring Nucleosome Unwrapping Using DNA Origami. , 2016, Nano letters.

[49]  Hao Yan,et al.  DNA-templated self-assembly of protein and nanoparticle linear arrays. , 2004, Journal of the American Chemical Society.

[50]  P. Tinnefeld,et al.  Quantum yield and excitation rate of single molecules close to metallic nanostructures , 2014, Nature Communications.

[51]  Antti-Pekka Eskelinen,et al.  Virus-encapsulated DNA origami nanostructures for cellular delivery. , 2014, Nano letters.

[52]  A. Paul Alivisatos,et al.  Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. , 2009, Journal of the American Chemical Society.

[53]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[54]  Tim Liedl,et al.  Hot spot-mediated non-dissipative and ultrafast plasmon passage , 2017, Nature Physics.

[55]  J. Götte Principles of Nano-Optics, 2nd edn., by Lukas Novotny and Bert Hecht , 2013 .

[56]  Na Liu,et al.  DNA-assembled bimetallic plasmonic nanosensors , 2014, Light: Science & Applications.

[57]  Tim Liedl,et al.  One-Step Formation of "Chain-Armor"-Stabilized DNA Nanostructures. , 2015, Angewandte Chemie.

[58]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[59]  R. Seidel,et al.  Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. , 2011, Nano letters.

[60]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[61]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[62]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[63]  Viswanadham Garimella,et al.  Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes , 2004, Nature Biotechnology.

[64]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[65]  George C Schatz,et al.  Using DNA to Link Gold Nanoparticles, Polymers and Molecules: a Theoretical Perspective. , 2010, The journal of physical chemistry letters.

[66]  David J. Mooney,et al.  Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation , 2017, Nature Communications.

[67]  Andrea Alu,et al.  A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance , 2013, CLEO: 2013.

[68]  Hao Yan,et al.  Scaffolded DNA origami of a DNA tetrahedron molecular container. , 2009, Nano letters.

[69]  Chengde Mao,et al.  DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. , 2005, Angewandte Chemie.

[70]  M. Komiyama,et al.  Enantioselective Incorporation of Azobenzenes into Oligodeoxyribonucleotide for Effective Photoregulation of Duplex Formation. , 2001, Angewandte Chemie.

[71]  Hao Yan,et al.  Organizing DNA origami tiles into larger structures using preformed scaffold frames. , 2011, Nano letters.

[72]  J. Dionne,et al.  A metafluid exhibiting strong optical magnetism. , 2013, Nano letters.

[73]  Tim Liedl,et al.  Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. , 2016, ACS nano.

[74]  Liguang Xu,et al.  Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. , 2016, Journal of the American Chemical Society.

[75]  Jeremy J. Baumberg,et al.  Gap-Dependent Coupling of Ag–Au Nanoparticle Heterodimers Using DNA Origami-Based Self-Assembly , 2016 .

[76]  Wei Xu,et al.  Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification (NEANA). , 2012, Small.

[77]  H. Gaub,et al.  Placing individual molecules in the center of nanoapertures. , 2014, Nano letters.

[78]  Baoquan Ding,et al.  Plasmonic Toroidal Metamolecules Assembled by DNA Origami. , 2016, Journal of the American Chemical Society.

[79]  A. Govorov,et al.  Plasmonic circular dichroism of chiral metal nanoparticle assemblies. , 2010, Nano letters.

[80]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[81]  Jelena Pešić,et al.  Hybrid Structures for Surface-Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene. , 2016, Small.

[82]  Yi Lu,et al.  DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. , 2012, ACS nano.

[83]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[84]  T. LaBean,et al.  One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold. , 2013, ACS nano.

[85]  Tim Liedl,et al.  Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. , 2012, ACS nano.

[86]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[87]  Jonathan P. K. Doye,et al.  Direct Simulation of the Self-Assembly of a Small DNA Origami. , 2016, ACS nano.

[88]  Kaylie L. Young,et al.  Plasmonically controlled nucleic acid dehybridization with gold nanoprisms. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[89]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[90]  Matt A. King,et al.  Three-Dimensional Structures Self-Assembled from DNA Bricks , 2012 .

[91]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[92]  Na Liu,et al.  DNA-assembled nanoarchitectures with multiple components in regulated and coordinated motion , 2019, Science Advances.

[93]  Tim Liedl,et al.  DNA origami structures directly assembled from intact bacteriophages. , 2014, Small.

[94]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[95]  K. Faulds,et al.  Surface-enhanced Raman spectroscopy for in vivo biosensing , 2017 .

[96]  Cody W. Geary,et al.  A single-stranded architecture for cotranscriptional folding of RNA nanostructures , 2014, Science.

[97]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[98]  J. Toppari,et al.  Plasmonic coupling and long-range transfer of an excitation along a DNA nanowire. , 2013, ACS nano.

[99]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[100]  C. Mirkin,et al.  Scanometric DNA array detection with nanoparticle probes. , 2000, Science.

[101]  J. Schellman,et al.  Flexibility of DNA , 1974, Biopolymers.

[102]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[103]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[104]  H. Kondoh,et al.  Nano-analysis of DNA conformation changes induced by transcription factor complex binding using plasmonic nanodimers. , 2013, ACS nano.

[105]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[106]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[107]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[108]  P. Rothemund,et al.  Engineering and mapping nanocavity emission via precision placement of DNA origami , 2016, Nature.

[109]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[110]  Yunqi Yan,et al.  Photoswitchable oligonucleotide-modified gold nanoparticles: controlling hybridization stringency with photon dose. , 2012, Nano letters.

[111]  Bozhi Tian,et al.  Plasmonic Photothermal Gold Bipyramid Nanoreactors for Ultrafast Real-Time Bioassays. , 2017, Journal of the American Chemical Society.

[112]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[113]  Matthew N. O’Brien,et al.  Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. , 2015, Nature materials.

[114]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[115]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[116]  Philip Tinnefeld,et al.  DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM. , 2015, Nano letters.

[117]  F. Simmel,et al.  DNA-based nanodevices , 2007 .

[118]  Christine K. McGinn,et al.  Raspberry-like metamolecules exhibiting strong magnetic resonances. , 2015, ACS nano.

[119]  Paul W K Rothemund,et al.  Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. , 2014, ACS nano.

[120]  P. Jain,et al.  Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. , 2010, Nano letters.

[121]  Hao Yan,et al.  Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA Nanogrids on a surface. , 2006, Nano letters.

[122]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[123]  H. Dietz,et al.  Uncovering the forces between nucleosomes using DNA origami , 2016, Science Advances.

[124]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[125]  Peter T C So,et al.  High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. , 2015, Nano letters.

[126]  Tim Liedl,et al.  DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies , 2015, Nano letters.

[127]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[128]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[129]  Na Liu,et al.  Selective control of reconfigurable chiral plasmonic metamolecules , 2017, Science Advances.

[130]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[131]  Na Liu,et al.  Optically Resolving the Dynamic Walking of a Plasmonic Walker Couple. , 2015, Nano letters.

[132]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[133]  Kevin G Yager,et al.  Superlattices assembled through shape-induced directional binding , 2015, Nature Communications.

[134]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[135]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[136]  Na Liu,et al.  A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function , 2016, Nature Communications.

[137]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[138]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[139]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[140]  Tao Zhang,et al.  Chiral plasmonic DNA nanostructures with switchable circular dichroism , 2013, Nature Communications.

[141]  Xingguo Liang,et al.  Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription , 2007, Nature Protocols.

[142]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[143]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[144]  A Paul Alivisatos,et al.  Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes , 2006, Proceedings of the National Academy of Sciences.

[145]  David R. Smith,et al.  Reconfigurable core-satellite nanoassemblies as molecularly-driven plasmonic switches. , 2008, Nano letters.

[146]  Hao Yan,et al.  DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. , 2010, Angewandte Chemie.

[147]  J. Storhoff,et al.  Sequence-Dependent Stability of DNA-Modified Gold Nanoparticles , 2002 .

[148]  Nadrian C Seeman,et al.  Structural DNA nanotechnology: growing along with Nano Letters. , 2010, Nano letters.

[149]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[150]  Lulu Qian,et al.  Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns , 2017, Nature.

[151]  Jie Chao,et al.  DNA-based plasmonic nanostructures , 2015 .

[152]  P. Nordlander,et al.  Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing. , 2015, ACS nano.

[153]  N. Seeman,et al.  Crystalline two-dimensional DNA-origami arrays. , 2011, Angewandte Chemie.

[154]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[155]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[156]  Friedrich C Simmel,et al.  DNA-based assembly lines and nanofactories. , 2012, Current opinion in biotechnology.

[157]  Qiao Jiang,et al.  Three-dimensional plasmonic chiral tetramers assembled by DNA origami. , 2013, Nano letters.

[158]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[159]  P. Nordlander,et al.  Fanoshells: nanoparticles with built-in Fano resonances. , 2010, Nano letters.

[160]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[161]  T. LaBean,et al.  Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. , 2013, Nano letters.

[162]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[163]  Liqiang Liu,et al.  Pyramidal sensor platform with reversible chiroptical signals for DNA detection. , 2014, Small.

[164]  F. Simmel,et al.  Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. , 2016, ACS nano.

[165]  C. Mirkin,et al.  Plasmonic photonic crystals realized through DNA-programmable assembly , 2014, Proceedings of the National Academy of Sciences.

[166]  T. Klar,et al.  Gold nanostoves for microsecond DNA melting analysis. , 2008, Nano letters.

[167]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[168]  Yonggang Ke,et al.  Au nanorod helical superstructures with designed chirality. , 2015, Journal of the American Chemical Society.

[169]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[170]  Federico Capasso,et al.  DNA-enabled self-assembly of plasmonic nanoclusters. , 2011, Nano letters.

[171]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[172]  T. Liedl,et al.  Folding DNA origami from a double-stranded source of scaffold. , 2009, Journal of the American Chemical Society.

[173]  Tim Liedl,et al.  Nanoscale structure and microscale stiffness of DNA nanotubes. , 2013, ACS nano.

[174]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[175]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[176]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[177]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[178]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[179]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[180]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[181]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[182]  Christine M. Micheel,et al.  Directed assembly of discrete gold nanoparticle groupings using branched DNA scaffolds , 2004 .

[183]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[184]  D. Reinhoudt,et al.  Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.

[185]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[186]  Liguang Xu,et al.  SERS Encoded Silver Pyramids for Attomolar Detection of Multiplexed Disease Biomarkers , 2015, Advanced materials.

[187]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[188]  Hyojeong Kim,et al.  Stability of DNA Origami Nanostructure under Diverse Chemical Environments , 2014 .

[189]  J. Chao,et al.  Folding super-sized DNA origami with scaffold strands from long-range PCR. , 2012, Chemical communications.

[190]  S. Smith,et al.  Ionic effects on the elasticity of single DNA molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[191]  N Engheta,et al.  Negative effective permeability and left-handed materials at optical frequencies. , 2004, Optics express.

[192]  A Paul Alivisatos,et al.  Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. , 2006, Nano letters.

[193]  Tim Liedl,et al.  Design and optical trapping of a biocompatible propeller-like nanoscale hybrid. , 2012, Nano letters.

[194]  C. Mirkin,et al.  Templated techniques for the synthesis and assembly of plasmonic nanostructures. , 2011, Chemical reviews.

[195]  Liguang Xu,et al.  Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. , 2012, Journal of the American Chemical Society.

[196]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[197]  Nam-Joon Cho,et al.  Strategies for enhancing the sensitivity of plasmonic nanosensors , 2015 .

[198]  N. Seeman,et al.  DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface , 2004 .

[199]  O. Gang,et al.  Photoluminescence enhancement in CdSe/ZnS-DNA linked-Au nanoparticle heterodimers probed by single molecule spectroscopy. , 2010, Chemical communications.

[200]  Nader Engheta,et al.  Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles , 2008, 0805.2329.

[201]  D. Ingber,et al.  Self-assembly of three-dimensional prestressed tensegrity structures from DNA , 2010 .

[202]  Faisal A. Aldaye,et al.  Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. , 2007, Journal of the American Chemical Society.

[203]  Chad A Mirkin,et al.  Asymmetric functionalization of gold nanoparticles with oligonucleotides. , 2006, Journal of the American Chemical Society.

[204]  Hao Yan,et al.  Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. , 2008, Journal of the American Chemical Society.

[205]  Na Liu,et al.  A rotary plasmonic nanoclock , 2019, Nature Communications.

[206]  Suchetan Pal,et al.  Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. , 2015, Nature materials.

[207]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.