Multilinear estimates for periodic KdV equations, and applications
暂无分享,去创建一个
Terence Tao | Hideo Takaoka | Gigliola Staffilani | Markus Keel | T. Tao | J. Colliander | G. Staffilani | M. Keel | H. Takaoka | Jim Colliander
[1] Terence Tao,et al. Sharp global well-posedness for KdV and modified KdV on ℝ and , 2003 .
[2] H. Takaoka,et al. Almost conservation laws and global rough solutions to a Nonlinear Schr , 2002, math/0203218.
[3] Terence Tao,et al. A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..
[4] T. Tao,et al. Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ , 2001, math/0110045.
[5] Luis Vega,et al. On the ill-posedness of some canonical dispersive equations , 2001 .
[6] Terence Tao,et al. Global Well-Posedness for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..
[7] T. Tao,et al. Global well-posedness for KdV in Sobolev spaces of negative index , 2001, math/0101261.
[8] T. Tao. Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations , 2000, math/0005001.
[9] Felipe Linares,et al. GLOBAL WELL-POSEDNESS FOR THE MODIFIED KORTEWEG-DE VRIES EQUATION , 1999 .
[10] J. Colliander,et al. Global wellposedness for KdV below ${L^2}$ , 1999 .
[11] S. Selberg. Multilinear Space-Time Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations , 1999 .
[12] T. Tao,et al. Local and global well-posedness of wave maps on $\R^{1+1}$ for rough data , 1998, math/9807171.
[13] Jean Bourgain,et al. Periodic Korteweg de Vries equation with measures as initial data , 1997 .
[14] Nils Svanstedt,et al. On the Ill‐Posedness of the IVP for the Generalized Korteweg‐De Vries and Nonlinear Schrödinger Equations , 1996 .
[15] Luis Vega,et al. A bilinear estimate with applications to the KdV equation , 1996 .
[16] J. Bourgain. On The Cauchy Problem for Periodic KDV-Type Equations , 2020 .
[17] S. B. Kuksin. Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's , 1995 .
[18] S. Klainerman,et al. Smoothing estimates for null forms and applications , 1994 .
[19] Luis Vega,et al. The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices , 1993 .
[20] C. Kenig,et al. Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .
[21] J. Bourgain,et al. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .
[22] J. Ginibre,et al. Uniqueness of solutions for the generalized Korteweg-de Vries equation , 1989 .
[23] M. Beals. Self-spreading and strength of singularities for solutions to semilinear wave equations , 1983 .
[24] M. Reed,et al. Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension , 1982 .
[25] T. Apostol. Introduction to analytic number theory , 1976 .