Multilinear estimates for periodic KdV equations, and applications

[1]  Terence Tao,et al.  Sharp global well-posedness for KdV and modified KdV on ℝ and , 2003 .

[2]  H. Takaoka,et al.  Almost conservation laws and global rough solutions to a Nonlinear Schr , 2002, math/0203218.

[3]  Terence Tao,et al.  A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..

[4]  T. Tao,et al.  Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ , 2001, math/0110045.

[5]  Luis Vega,et al.  On the ill-posedness of some canonical dispersive equations , 2001 .

[6]  Terence Tao,et al.  Global Well-Posedness for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..

[7]  T. Tao,et al.  Global well-posedness for KdV in Sobolev spaces of negative index , 2001, math/0101261.

[8]  T. Tao Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations , 2000, math/0005001.

[9]  Felipe Linares,et al.  GLOBAL WELL-POSEDNESS FOR THE MODIFIED KORTEWEG-DE VRIES EQUATION , 1999 .

[10]  J. Colliander,et al.  Global wellposedness for KdV below ${L^2}$ , 1999 .

[11]  S. Selberg Multilinear Space-Time Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations , 1999 .

[12]  T. Tao,et al.  Local and global well-posedness of wave maps on $\R^{1+1}$ for rough data , 1998, math/9807171.

[13]  Jean Bourgain,et al.  Periodic Korteweg de Vries equation with measures as initial data , 1997 .

[14]  Nils Svanstedt,et al.  On the Ill‐Posedness of the IVP for the Generalized Korteweg‐De Vries and Nonlinear Schrödinger Equations , 1996 .

[15]  Luis Vega,et al.  A bilinear estimate with applications to the KdV equation , 1996 .

[16]  J. Bourgain On The Cauchy Problem for Periodic KDV-Type Equations , 2020 .

[17]  S. B. Kuksin Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDE's , 1995 .

[18]  S. Klainerman,et al.  Smoothing estimates for null forms and applications , 1994 .

[19]  Luis Vega,et al.  The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices , 1993 .

[20]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[21]  J. Bourgain,et al.  Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations , 1993 .

[22]  J. Ginibre,et al.  Uniqueness of solutions for the generalized Korteweg-de Vries equation , 1989 .

[23]  M. Beals Self-spreading and strength of singularities for solutions to semilinear wave equations , 1983 .

[24]  M. Reed,et al.  Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension , 1982 .

[25]  T. Apostol Introduction to analytic number theory , 1976 .