Crystal structure of a eukaryotic phosphate transporter

[1]  Xinqi Gong,et al.  Crystal structure of a bacterial homologue of glucose transporters GLUT1–4 , 2012, Nature.

[2]  M. G. Madej,et al.  Apo-intermediate in the transport cycle of lactose permease (LacY) , 2012, Proceedings of the National Academy of Sciences.

[3]  J. Thevelein,et al.  Mutational analysis of putative phosphate- and proton-binding sites in the Saccharomyces cerevisiae Pho84 phosphate:H(+) transceptor and its effect on signalling to the PKA and PHO pathways. , 2012, The Biochemical journal.

[4]  S. Iwata,et al.  Alternating access mechanism in the POT family of oligopeptide transporters , 2012, The EMBO journal.

[5]  A. Varma,et al.  Piriformospora indica: A Novel Plant Growth-Promoting Mycorrhizal Fungus , 2012, Agricultural Research.

[6]  A. Varma,et al.  Piriformospora indica: A Novel Plant Growth-Promoting Mycorrhizal Fungus , 2012, Agricultural Research.

[7]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[8]  L. Nussaume,et al.  Phosphate Import in Plants: Focus on the PHT1 Transporters , 2011, Front. Plant Sci..

[9]  Hyeon Joo,et al.  OPM database and PPM web server: resources for positioning of proteins in membranes , 2011, Nucleic Acids Res..

[10]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[11]  L. Forrest,et al.  The structural basis of secondary active transport mechanisms. , 2011, Biochimica et biophysica acta.

[12]  S. Baldwin,et al.  Crystal structure of a prokaryotic homologue of the mammalian oligopeptide–proton symporters, PepT1 and PepT2 , 2011, The EMBO journal.

[13]  H. Kaback,et al.  The Alternating Access Transport Mechanism in LacY , 2010, The Journal of Membrane Biology.

[14]  H. Gong,et al.  Structure of a fucose transporter in an outward-open conformation , 2010, Nature.

[15]  M. Kumar,et al.  A Phosphate Transporter from the Root Endophytic Fungus Piriformospora indica Plays a Role in Phosphate Transport to the Host Plant* , 2010, The Journal of Biological Chemistry.

[16]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[17]  M. Niemi,et al.  Membrane transporters in drug development , 2010, Nature Reviews Drug Discovery.

[18]  A. Sali,et al.  Comparison of human solute carriers , 2010, Protein science : a publication of the Protein Society.

[19]  P. Nissen,et al.  Structure determination using poorly diffracting membrane-protein crystals: the H+-ATPase and Na+,K+-ATPase case history. , 2010, Acta crystallographica. Section D, Biological crystallography.

[20]  J. Thevelein,et al.  Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor , 2010, Proceedings of the National Academy of Sciences.

[21]  E. Lindahl,et al.  Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. , 2010, Journal of chemical theory and computation.

[22]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[23]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[24]  Roland L. Dunbrack,et al.  proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 , 2022 .

[25]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.

[26]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[27]  A. Sali,et al.  Selecting optimum eukaryotic integral membrane proteins for structure determination by rapid expression and solubilization screening. , 2009, Journal of molecular biology.

[28]  H. Schiöth,et al.  The solute carrier (SLC) complement of the human genome: Phylogenetic classification reveals four major families , 2008, FEBS letters.

[29]  N. Grishin,et al.  PROMALS3D: a tool for multiple protein sequence and structure alignments , 2008, Nucleic acids research.

[30]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[31]  Jaroslav Koca,et al.  MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. , 2007, Structure.

[32]  C. Altenbach,et al.  Sugar binding induces an outward facing conformation of LacY , 2007, Proceedings of the National Academy of Sciences.

[33]  M. Sansom,et al.  Conformational change in an MFS protein: MD simulations of LacY. , 2007, Structure.

[34]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[35]  D. Lawson,et al.  Molecular replacement in the 'twilight zone': structure determination of the non-haem iron oxygenase NovR from Streptomyces spheroides through repeated density modification of a poor molecular-replacement solution. , 2006, Acta crystallographica. Section D, Biological crystallography.

[36]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[37]  J. Dupuy,et al.  Serendipitous discovery of a human phosphate binding apolipoprotein , 2006 .

[38]  G. Chang,et al.  Structure of the Multidrug Transporter EmrD from Escherichia coli , 2006, Science.

[39]  J. Dupuy,et al.  Serendipitous discovery and X-ray structure of a human phosphate binding apolipoprotein. , 2006, Structure.

[40]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[41]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[42]  Andreas Rolfs,et al.  The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins , 2004, Pflügers Archiv.

[43]  G Bricogne,et al.  Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. , 2003, Acta crystallographica. Section D, Biological crystallography.

[44]  J. Hajdu,et al.  MIR phasing using merohedrally twinned crystals. , 2003, Acta crystallographica. Section D, Biological crystallography.

[45]  S. Iwata,et al.  Structure and Mechanism of the Lactose Permease of Escherichia coli , 2003, Science.

[46]  Da-Neng Wang,et al.  Structure and Mechanism of the Glycerol-3-Phosphate Transporter from Escherichia coli , 2003, Science.

[47]  M. N. Vyas,et al.  Crystal structure of M tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by ion-dipole interactions. , 2003, Structure.

[48]  B. Persson,et al.  Regulation of phosphate acquisition in Saccharomyces cerevisiae , 2003, Current Genetics.

[49]  J. Thevelein,et al.  Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae , 2003, Molecular microbiology.

[50]  Sriram Subramaniam,et al.  Three-dimensional structure of a bacterial oxalate transporter , 2002, Nature Structural Biology.

[51]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Giacomini,et al.  Arginine 454 and lysine 370 are essential for the anion specificity of the organic anion transporter, rOAT3. , 2001, Biochemistry.

[53]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[54]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[55]  R. M. Krupka Coupling mechanisms in active transport. , 1993, Biochimica et biophysica acta.

[56]  玉一 芦田,et al.  Acta Crystallographica Section D (Biological Crystallography) の発刊に際して , 1993 .

[57]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[58]  F. Quiocho,et al.  High specificity of a phosphate transport protein determined by hydrogen bonds , 1990, Nature.

[59]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[60]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[61]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[62]  Airlie J McCoy,et al.  Liking likelihood. , 2004, Acta crystallographica. Section D, Biological crystallography.

[63]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[64]  M. Saraste,et al.  FEBS Lett , 2000 .

[65]  R. Müller,et al.  Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. , 1994, Nucleic acids research.