The melting point of lithium: an orbital-free first-principles molecular dynamics study

The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. We adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453 K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. Our theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.

[1]  Emily A. Carter,et al.  Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .

[2]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[3]  Car,et al.  Ab initio molecular dynamics study of first-order phase transitions: melting of silicon. , 1995, Physical review letters.

[4]  E. Carter,et al.  Density-decomposed orbital-free density functional theory for covalently bonded molecules and materials , 2012 .

[5]  J. Raty,et al.  Tetrahedral clustering in molten lithium under pressure. , 2008, Physical review letters.

[6]  M. J. Stott,et al.  Surface structure in simple liquid metals. An orbital free first principles study. , 2006, cond-mat/0606171.

[7]  G. Ackland,et al.  Lattice dynamics of dense lithium. , 2012, Physical review letters.

[8]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[9]  Emily A. Carter,et al.  Nonlocal orbital-free kinetic energy density functional for semiconductors , 2010 .

[10]  Linda Hung,et al.  Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics , 2009 .

[11]  Wang,et al.  Melting line of aluminum from simulations of coexisting phases. , 1994, Physical review. B, Condensed matter.

[12]  Reinhard Boehler,et al.  Melting temperature, adiabats, and Grüneisen parameter of lithium, sodium and potassium versus pressure , 1983 .

[13]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[14]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[15]  E. Schwegler,et al.  Electronic and structural transitions in dense liquid sodium , 2007, Nature.

[16]  Á. Rodríguez-Prieto,et al.  First-principles simulations of lithium melting: stability of the bcc phase close to melting. , 2010, Physical review letters.

[17]  M. J. Stott,et al.  Surface structure of liquid Li and Na: an ab initio molecular dynamics study. , 2004, Physical review letters.

[18]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[19]  Xueyu Song,et al.  The melting lines of model systems calculated from coexistence simulations , 2002 .

[20]  F. Perrot Hydrogen-hydrogen interaction in an electron gas , 1994 .

[21]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[22]  E. Maginn,et al.  A comparison of methods for melting point calculation using molecular dynamics simulations. , 2012, The Journal of chemical physics.

[23]  G. Kresse Ab initio molecular dynamics applied to the dynamics of liquid metals and to the metal-non-metal transition , 1996 .

[24]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[25]  S. Deemyad,et al.  High pressure melting of lithium. , 2012, Physical review letters.

[26]  Emily A. Carter,et al.  Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment , 2004 .

[27]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[28]  Chen Huang,et al.  PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Transferable local pseudopotentials for magnesium, aluminum and silicon , 2008 .

[29]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  Dario Alfe,et al.  First-principles simulations of direct coexistence of solid and liquid aluminum , 2003, cond-mat/0308226.

[31]  Chen Huang,et al.  Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations , 2010, Comput. Phys. Commun..

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[34]  Qin Wu,et al.  A direct optimization method for calculating density functionals and exchange–correlation potentials from electron densities , 2003 .

[35]  P. Madden,et al.  Structure and dynamics of liquid lithium: comparison of ab initio molecular dynamics predictions with scattering experiments , 1999 .

[36]  Lidunka Vočadlo,et al.  Ab initio melting curve of the fcc phase of aluminum , 2002 .

[37]  Astronomy,et al.  Exchange-correlation energy and the phase diagram of Si , 2002, cond-mat/0207531.

[38]  M. J. Stott,et al.  Atomic dynamics in simple liquid metals and alloys , 2002 .

[39]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[40]  E. Fermi Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .

[41]  P. Madden,et al.  Structure and dynamics at the aluminum solid–liquid interface: An ab initio simulation , 2000 .

[42]  Emily A. Carter,et al.  Toward an orbital-free density functional theory of transition metals based on an electron density decomposition , 2012 .

[43]  Emily A. Carter,et al.  Introducing PROFESS: A new program for orbital-free density functional theory calculations , 2008, Comput. Phys. Commun..

[44]  李幼升,et al.  Ph , 1989 .

[45]  P. Clancy,et al.  A computer simulation study of the melting and freezing properties of a system of Lennard-Jones particles , 1987 .

[46]  Smargiassi,et al.  Orbital-free kinetic-energy functionals for first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Brian B. Laird,et al.  The crystal/liquid interface: structure and properties from computer simulation , 1992 .

[49]  S. Sinogeikin,et al.  Cold melting and solid structures of dense lithium , 2011 .

[50]  Madden,et al.  Further orbital-free kinetic-energy functionals for ab initio molecular dynamics. , 1996, Physical review. B, Condensed matter.

[51]  P. Madden,et al.  The dynamic structure of liquid sodium from ab initio simulation , 1994 .

[52]  P. Madden,et al.  Ab initio determination of the melting point of aluminum by thermodynamic integration , 2000 .

[53]  L. Zakharov,et al.  Performance projections for the lithium tokamak experiment (LTX) , 2008 .

[54]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[55]  Daan Frenkel,et al.  Simulations: The dark side , 2012, The European Physical Journal Plus.

[56]  S. Steeb,et al.  Experimental Determination of the Form and Structure Factor of Molten Lithium , 1983 .

[57]  48 , 2015, Slow Burn.

[58]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[59]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[60]  Roland W. Ohse,et al.  Handbook of thermodynamic and transport properties of alkali metals , 1985 .

[61]  C. Weizsäcker Zur Theorie der Kernmassen , 1935 .

[62]  Yanming Ma,et al.  Predicted novel high-pressure phases of lithium. , 2011, Physical review letters.