The melting point of lithium: an orbital-free first-principles molecular dynamics study
暂无分享,去创建一个
Emily A. Carter | Linda Hung | Chen Huang | Junchao Xia | Mohan Chen | Chen Huang | Linda Hung | E. Carter | Mohan Chen | J. Xia | L. Hung
[1] Emily A. Carter,et al. Orbital-free kinetic-energy functionals for the nearly free electron gas , 1998 .
[2] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[3] Car,et al. Ab initio molecular dynamics study of first-order phase transitions: melting of silicon. , 1995, Physical review letters.
[4] E. Carter,et al. Density-decomposed orbital-free density functional theory for covalently bonded molecules and materials , 2012 .
[5] J. Raty,et al. Tetrahedral clustering in molten lithium under pressure. , 2008, Physical review letters.
[6] M. J. Stott,et al. Surface structure in simple liquid metals. An orbital free first principles study. , 2006, cond-mat/0606171.
[7] G. Ackland,et al. Lattice dynamics of dense lithium. , 2012, Physical review letters.
[8] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods , 1984 .
[9] Emily A. Carter,et al. Nonlocal orbital-free kinetic energy density functional for semiconductors , 2010 .
[10] Linda Hung,et al. Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics , 2009 .
[11] Wang,et al. Melting line of aluminum from simulations of coexisting phases. , 1994, Physical review. B, Condensed matter.
[12] Reinhard Boehler,et al. Melting temperature, adiabats, and Grüneisen parameter of lithium, sodium and potassium versus pressure , 1983 .
[13] F. Murnaghan. The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.
[14] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[15] E. Schwegler,et al. Electronic and structural transitions in dense liquid sodium , 2007, Nature.
[16] Á. Rodríguez-Prieto,et al. First-principles simulations of lithium melting: stability of the bcc phase close to melting. , 2010, Physical review letters.
[17] M. J. Stott,et al. Surface structure of liquid Li and Na: an ab initio molecular dynamics study. , 2004, Physical review letters.
[18] Stefan Goedecker,et al. ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..
[19] Xueyu Song,et al. The melting lines of model systems calculated from coexistence simulations , 2002 .
[20] F. Perrot. Hydrogen-hydrogen interaction in an electron gas , 1994 .
[21] Hoover,et al. Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.
[22] E. Maginn,et al. A comparison of methods for melting point calculation using molecular dynamics simulations. , 2012, The Journal of chemical physics.
[23] G. Kresse. Ab initio molecular dynamics applied to the dynamics of liquid metals and to the metal-non-metal transition , 1996 .
[24] N. Govind,et al. Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .
[25] S. Deemyad,et al. High pressure melting of lithium. , 2012, Physical review letters.
[26] Emily A. Carter,et al. Transferable local pseudopotentials derived via inversion of the Kohn-Sham equations in a bulk environment , 2004 .
[27] Mark E. Tuckerman,et al. Explicit reversible integrators for extended systems dynamics , 1996 .
[28] Chen Huang,et al. PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Transferable local pseudopotentials for magnesium, aluminum and silicon , 2008 .
[29] L. H. Thomas. The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] Dario Alfe,et al. First-principles simulations of direct coexistence of solid and liquid aluminum , 2003, cond-mat/0308226.
[31] Chen Huang,et al. Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations , 2010, Comput. Phys. Commun..
[32] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[33] M. Parrinello,et al. Crystal structure and pair potentials: A molecular-dynamics study , 1980 .
[34] Qin Wu,et al. A direct optimization method for calculating density functionals and exchange–correlation potentials from electron densities , 2003 .
[35] P. Madden,et al. Structure and dynamics of liquid lithium: comparison of ab initio molecular dynamics predictions with scattering experiments , 1999 .
[36] Lidunka Vočadlo,et al. Ab initio melting curve of the fcc phase of aluminum , 2002 .
[37] Astronomy,et al. Exchange-correlation energy and the phase diagram of Si , 2002, cond-mat/0207531.
[38] M. J. Stott,et al. Atomic dynamics in simple liquid metals and alloys , 2002 .
[39] Wang,et al. Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.
[40] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .
[41] P. Madden,et al. Structure and dynamics at the aluminum solid–liquid interface: An ab initio simulation , 2000 .
[42] Emily A. Carter,et al. Toward an orbital-free density functional theory of transition metals based on an electron density decomposition , 2012 .
[43] Emily A. Carter,et al. Introducing PROFESS: A new program for orbital-free density functional theory calculations , 2008, Comput. Phys. Commun..
[45] P. Clancy,et al. A computer simulation study of the melting and freezing properties of a system of Lennard-Jones particles , 1987 .
[46] Smargiassi,et al. Orbital-free kinetic-energy functionals for first-principles molecular dynamics. , 1994, Physical review. B, Condensed matter.
[47] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[48] Brian B. Laird,et al. The crystal/liquid interface: structure and properties from computer simulation , 1992 .
[49] S. Sinogeikin,et al. Cold melting and solid structures of dense lithium , 2011 .
[50] Madden,et al. Further orbital-free kinetic-energy functionals for ab initio molecular dynamics. , 1996, Physical review. B, Condensed matter.
[51] P. Madden,et al. The dynamic structure of liquid sodium from ab initio simulation , 1994 .
[52] P. Madden,et al. Ab initio determination of the melting point of aluminum by thermodynamic integration , 2000 .
[53] L. Zakharov,et al. Performance projections for the lithium tokamak experiment (LTX) , 2008 .
[54] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[55] Daan Frenkel,et al. Simulations: The dark side , 2012, The European Physical Journal Plus.
[56] S. Steeb,et al. Experimental Determination of the Form and Structure Factor of Molten Lithium , 1983 .
[57] 48 , 2015, Slow Burn.
[58] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[59] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[60] Roland W. Ohse,et al. Handbook of thermodynamic and transport properties of alkali metals , 1985 .
[61] C. Weizsäcker. Zur Theorie der Kernmassen , 1935 .
[62] Yanming Ma,et al. Predicted novel high-pressure phases of lithium. , 2011, Physical review letters.