Asymptotic analysis of the Navier-Stokes equations in the domains

We are interested in this article with the Navier–Stokes equations of viscous incompressible fluids in three dimensional thin domains. Let Ωe be the thin domain Ωe = ω × (0, e), where ω is a suitable domain in R and 0 < e < 1. Our aim is to derive an asymptotic expansion of the strong solution u of the Navier–Stokes equations in the thin domain Ωe when e is small, which is valid uniformly in time. This study should give a better understanding of the global existence results in thin domains obtained previously; see [15]–[17] and [23], [22]. We consider in this work two types of boundary conditions: the Dirichlet-periodic boundary condition and the purely periodic condition. For the first type of boundary condition we derive an asymptotic expansion of the solution u in terms of the solution of the associated Stokes problem. More precisely, we prove that the solution can be written, for e small, as

[1]  M. Ziane On the Two-Dimensional Navier—Stokes Equations with the Free Boundary Condition , 1998 .

[2]  M. Ziane Optimal bounds on the dimension of the attractor of the Navier-Stokes equations , 1997 .

[3]  Roger Temam,et al.  Navier-Stokes equations in three-dimensional thin domains with various boundary conditions , 1996, Advances in Differential Equations.

[4]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[5]  George R. Sell,et al.  Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions , 1993 .

[6]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[7]  O. A. Ladyzhenskaia Solution "in the Large" to the Boundary-Value Problem for the Navier-Stokes Equations in Two Space Variables , 1960 .

[8]  Roger Temam,et al.  Navier-Stokes equations in thin spherical domains , 1997 .

[9]  G. Bayada,et al.  Inertial effects in the asymptotic behavior of a thin film flow , 1994 .

[10]  Jack K. Hale,et al.  A damped hyperbolic equation on thin domains , 1992 .

[11]  Hantaek Bae Navier-Stokes equations , 1992 .

[12]  H. L. Dret,et al.  Problèmes variationnels dans les multi-domaines : modélisation des jonctions et applications , 1991 .

[13]  Philippe G. Ciarlet,et al.  Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis , 1991 .

[14]  Philippe G. Ciarlet,et al.  Plates And Junctions In Elastic Multi-Structures , 1990 .

[15]  G. Raugel,et al.  Equations de Navier-Stokes dans des domaines minces en dimension trois: régularité globale , 1989 .

[16]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[17]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[18]  J. Ghidaglia Regularite des solutions de certains problems aux limites Lineaires lies aux equations d'euler , 1984 .

[19]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .

[20]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .

[21]  Jean Leray,et al.  Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .