Vibrational sidebands and the Kondo effect in molecular transistors.

Electron transport through molecular quantum dots coupled to a single vibrational mode is studied in the Kondo regime. We apply a generalized Schrieffer-Wolff transformation to determine the effective low-energy spin-spin-vibron interaction. From this model we calculate the nonlinear conductance and find Kondo sidebands located at bias voltages equal to multiples of the vibron frequency. Because of selection rules, the side peaks are found to have strong gate-voltage dependences, which can be tested experimentally. In the limit of weak electron-vibron coupling, we employ a perturbative renormalization group scheme to calculate analytically the nonlinear conductance.